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1? Introduction

This report presents the results of the investigations conducted over a

period of four years on control algorithms designed for stochastic systems.

The main feature of these algorithms is that tftey' account for

3 rI) the current uncertainty in the systemj

# }the anticipated future uncertainty in the system, which is,
in general control-dependent

The first feature leads to the control to nave the cautious property

in order to minimize the effect of the current uncertainties on the system's

performance.

The second feature allows the control to affect in addition to the

' system's state also the system's uncertainty. Such a controller is ca led

_- C4/l

-'dual controller" because, by taking advantage of its dual effect has the

capability of reducing the future uncertainties.

These uncertainties can pertain to the system's state or its unknown

parameters. Both continuous-valued and discrete-valued uncertainties have

been consiaered.

The next section summarizes the major results of the research effort

that have been published in reading control journals and presented at

major national and international conferences.
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2• Summary of Results >

In the following an outline of each publication is given.

papers appear in the Appendix.

2.1. C.J. Wenk and Y. aar-Shalom, "A Multiple Model Adaptive Dual Control
Algorithm for Stochastic Systems with Unknown Parameters," IEEE Trans.
Automatic Control, vol. AC-25, pp. 703-710, Aug. 1980.

In this work an adaptive dual control algorithm is presented for linear

stochastic systems with constant but unknown parameters. The system

parameters are assumed to belong to a finite set on which a prior proba-

bility distribution is available. The tool used to derive the algorithm

is preposterior analysis: a probabilistic characterization of the future

adaptation process allows the contrtoller to take advantage of the dual

effect. The resulting actively adaptive control called model adaptive

dual (MAD) control is compared to two passively adaptive control

algorithms-the heuristic certainty equivalence (HCE) and the De-

shpande-Upadhyay-Lainiotis (DUL) model-weighted controllers. An

analysis technique developed for the comparison of different con-

trollers is used to snow statistically significant improvement in

the performance of the MAD algorithm over those of the HCE and DUL.

2.2 Y. Bar-Shalom, "Stochastic Dynamic Programming, Caution and Probing,"
IEEE Trans. Automatic Control, vol. AC-26, pp. 1184-1195, Oct. 1981.

Tne purpose of thls paper is to unity the concepts of caution and probing

put forth by Feldbaum with the mathematical technique of stochastic dynamic

prograning originated oy tellman. The recently developed aecomposition of

the expected cost in a stochastic control problem, is used to assess quan-

*titatively the caution and probing effects of the system, uncertainties

on the control. It is shown how in some problems, because of the

. . '. . -,- ,'-..... .'- ' .* '-* . ' * . -'- .- '- ' . - " ." - '-" :" - ': '- '-"-':"":
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uncertainties, the control becomes cautious (less aggressive) while in

other problems it will probe (by becoming more aggressive) in order to

enhance the estimation/identification while controlling the system.

Following this a classification of stochastic control problems

according to the dominant effect is discussed. Tnis is then used to point

out which are the stochastic control problems where substantial improve-

ments can be expected from using a sophisticated algorithm versus a

simple one.

2.3 Y. Bar-Shalom and J. A. Holusis, "Stochastic Control and Identification
Enhancement for the Flutter Suppression Problem," Proc. 8th IFAC World
Congress, Kyoto, Japan, Aug. 1981.

The topic of this paper is the application of some recent results in

Stochastic control to an aerospace problem where there are large

uncertainties in the dynamics of the plant to be controlled. An approxi-

mation to the stochastic Dynamic Programming is considered that results

in an adaptive control of the "closed-loop" type: it utilizes feedback

(latest state and parameter estimates and their uncertainties) as well

as their anticipated future uncertainties - it anticipates (subject to

causality) subsequent feedback. This algorithm has the feature that

allows the control to enhance the parameter identification in real time.

This is done using the control's dual effect: the control can affect

the state as well as the (augmented) state uncertainty and thus can

reduce the uncertainty aoout some parameters. A flight control applica-

tion in which stochastic adaptive control appears to offer significant

payoff is the active control of aircraft wing-store flutter. Improved

flutter suppression can be accomplished with an adaptive controller that

has the capability to learn and identify the flutter modes during the

flight.

.4
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2.4 C. J. Wenk and Y. ear-Shalom, "Model Adaptive Dual Control of M1MU
Stochastic Systems," Proc. 20th IEEE Conf. on Decision and Control,
San Diego, CA, vec. 1981.

An adaptive dual control algorithm is presented for multiple-input,

multiple output (MIMO) linear systems with input and output noise and

unknown parameters. The system parameters are assumed to belong to a

finite set on which a prior probability distribution is available. The

difficulties in characterizing the future evolution Of the MIMO system

information as required by the dynamic programmig are overcome through

a novel way of using preposterior analysis. This provides a proba-

bilistic characterization of the future adaptation process and allows

the controller to take advantage of the dual effect.

2.5 Y. Bar-Shalom, P. Mookerjee and J. A. Molusis, "A Linear Feedback Dual
Controller for a Class of Stochastic Systems," Proc. CNRS Collog.
Automatique, Belle-Ile, France, Sept. 1982.

The methodology for deriving a dual control algorithm that has a linear

feedback form is presented. This control, while simple, has the capa-

bility of enhancing the identification of the system's unknown

parameters. A dual controller for a plant describing the helicopter

higher harmonic vibration control problem is presented together with

simulation results.

* 2.6 K. Sirmiwal and Y. fSar-Shalom, "Dual Control Guidance for Simultaneous
Identification and Interception of a Target," Automatica 20:737-749,
Nove. 1984.

An adaptive dual-control guidance algorithm is presented for intercepting

a moving target in the presence of an interferring target (decoy) in a

stochastic environiment. Two sequences of measurements are obtained at

discrete points in time; however, it is not certain which sequence came

from the target ot interest and which from the decoy. Associated with

*,' .. . ....*% ** *% * " * .. . ." " " "..." " . " . . .... . "...-.* .' ''*' ''*' ''*" '' '''* '.



each track, the interceptor also receives noisy, state-dependent feature

measurements. The optimum control for the interceptor which is given by

the solution of the stochastic dynamic programming equation is not numeri-

cally feasible to obtain. An approximate solution of this equation is

obtained by evaluating the value of the future information gathering.

This is done through the use of preposterior analysis:approximate prior

probability densities are obtained and used to describe the future

learning and control. In this way, the interceptor control is used

for information gathering in order to reduce the future target and decoy

decoy inertial measurement errors and enhance the observable target/decoy

feature differences for subsequent discrimination between tie true target

and the decoy. Simulation studies have shown tle effectiveness of the

scheme.

2.7 J. A. Molusis, P. Mookerjee and Y. Bar-Shalom, "Dual Adaptive Control
Based upon Sensitivity Functions," Proc. 23rd IEEE Conf. on Decision
and Control, Las Vegas, NV, Uec. 1984.

J

A new adaptive dual control solution is presented for the control of a

class of multi-variable input-output system. Both rapidly varying

random parameters and constant but unknown parameters are included. The

new controller modifies the cautious control design by numerator and

denominator correction terms. This controller is shown to depend upon

sensitivity functions of the expected future cost. A scalar example

is presented to provide insight into the properties of the new dual

controller. Monte-Carlo simulations are performed which show improve-

ment over the cautious controller and the Linear Feedback Dual Con-

troller.

2 Si.
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A Multiple Model Adaptive Dual Control Algorithm
for Stochastic Systems with Unknown Parameters

CARL J. WENK. siv~iwr suiEam, iEEii, AND YAAKOV
BAR-SHALOM. sENiR urmn.a min!

Abstracti-An adaptive duanl control algorithm Is presented for lintea
sI'm as" systeon viftl cointaa but unknown paineser. The systems
parameten we mmmdm to belong to a flakte at on wh"c a prior
probait ditribution in available. The tood wed to derive the algorithml
Is prepelor mldyuls: a probabilistic characterizteom of the future
sidnpeadon Itr-m. alm the cotroller to take advantage of the doal
effet. 11w remiltig actively adptve cotmol calii mlodal aidptive dod
(MAD) control Is cosplared to tmo pansively adptve control
algoetlm-tbe hIsI d certainty eqmk 11em- (HCE) ad the De-
sbpaaode-UpajryyLahlots (DUL) toodelk eiguie couttuhen An anly-
s is technique developed for the comnputrsom of diewm controllers lemed
to dibn. statisticaly IVgoInes-t bproveomea In the perosanie of the
MAD aorhmove those . the NICE and DUL

1. INTaoriDc-noN

In the control of linear stochastic systems with quadratic cost. the
certainty equivalence property 161 is known to hold. If. however, there
are unknown parameters in the system to be controlled. then certainty
equivalence does not hold and the dynamic programiung cannot be
solved IlIl. In this case a control decision is known to affect not just the
future state of the system, but also the future state and parameter
uncertainty; that is. the control has the dual effect. first discussed by
Feldbaum 1151. and later shown to be intimately related to the certainty
equivalence property 161.

Manuerupt romered Apri 4.1i979. revised March 4.19W Paper reconmended by J L
Speyer. Past Chairman ofthe Stochasic Control Committee. That work Ws supported by
lb. NSF under Grant ENG.77-0O1177 and tbe AFOSR under Grant 110-0111

The author si w iith tb. Deperimeel of Electrical Engaamrong ad Conspiler Science.
Uawvrniy of Connecicut. Slorre. CT 01,266
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Because the parameter uncertainty renders the optimum control solu- are polynomials in the delay operator q defined by q - 'z(t)- z(i - I).
tion unattainable, a number of parameter-adaptive suboptimum control The system output isy(0. the input is u(i). and e(f) is a zero-mean, white
strategies have been sought [14],1191 [231.113I.21.J241. With the excep- Gaussian disturbance with standard deviation A. Part or all of the
tion of 124]. most of these strategies, however, are in the passive feedback parameter vector defined by
classification as discussed in [6). That is. the% do not take into account
the knowledge that future learning about the unknown system parame- - (ala2 ... ablb2 ... b.1 (2.4)
tefs will occur. An algorithm which uses such knowledge to improve its
control decisions is called actively adaptise: it takes advantage of the is unknown. It is assumed, however, that the true parameter vector is
dual effect of the control to improve the identification and ultimately the corresponding known a priori probabilities
performance.

This paper presents an actively adaptive control algorithm for linear P[O=O, .%'(O): - ,M (2.5)
stochastic systems where the vector 0 consisting of the constant but
unknown system parameters, is equal to one of the Ml known model N(
parameter vectors 0,. j- I,..... This assumption that the true system / • I (2.6)
is a member of a discrete set of known model systems has been used for

thc Ji" el'pment of a number of passively adaptive control algorithms The objective is to determine a sequence of control decisions u().
1131.1, -ll .K I:. 211 and has received considerable recent attention in. for u(I). .u(N- II) which minimizes
example. the adaptie flight kontrol problem for the F-8 Digital-Fly-By-
Wire Aircraft 121.13 Pcrfor-nance difficulties have arisen, however, due J(O)- EIC(0) (2.7)

to the inherentl passive learning properties of existing algorithms de- where the cost is quadratic about a reference trajectory
signed for the multiple model adaptive control problem The algorithm
presented in this paper. with its active learning properties, should repre- I 2
sent an advance toward a more sophisticated solution of the multiple C(:) q(N)Jy( . -v,(N. 

2

model problem. I v-I
The actively adaptive control algorithm presented here. called the + _q( i)[y(r)-y,(r)12 + r(r)(u(r) -u,(i-)]

2  (2.8)
model adaptive dual (MAD) control algorithm, is developed and studied
within the context of controlling the output of a single-input, single-out- subject to (2.1)-(2.6). The expectation in (2.7) is performed with respect
put system, in order to help gain understanding of the dual effect of the to all random variables in C(0), with the quantities q(t), r(t), y,(t), and
control in the multiple model prblem. The problem s formulated in u,(t) all known (time-varying) constants, t-0, I... N. The information
Section II. The MAD algorithm for two models is obtained in Sections vector at time I, Z(t) consists of the sequence of known outputs and
Ill -V bv constructing an approximate solution to the stochastic dynamic control decisions
programnung, the exact solution of which would give the globally
optimum (dual) control. Evaluation of the value of future information Z(f)-{y(0).v(l)... .. y(f),u(0),u0), .. u(i-l)). (2.9)
gathering will be made through the use of prepostenor analysis 1181;
approximate prior probability densities are obtained and used to de- Given that an admissible control decision u(t) is a function of Z(t) as

scribe future learning and control. The extension to M > 2 models is well as the statistical description of the future observations (61, the
presented in Section VI. optimum solution to the problem is given by the stochastic dynamic

Numerical studies and compansons of the MAD algonthm are made programming as

itn Section VII with two passive algorithms. the heuristic certainty ( a I q(t)( )(i)_y,(f)] + lr()u(I)_u,()]2
equivalence (HCE) algorithm. and the Deshpande-Upadhyay-Lainiotis u2(t-argnnE 2

* (DULl algorithm. as well as with the optimal controls produced for each
model system with known parameters. A rigorous statistical analysis +J*(,+ L.u()ILZ()I)( ) (2.10)

*., technique is presented for a meaningful comparison of the performances
JP" obtained from Monte Carlo simulations employing the above algo- where JO[,+ I.u(i)l is the optimum cost-to-go from t+ I to the end, and

nthms.' It is shown by statistical tests performed on the results of a is a function of the present control decision u(I). The globally optimum
Monte Carlo simulation procedure that significant performance im- control cannot, in general, be computed-the only sure way of avoiding
provements may be achieved using MAD over HCE and DUL. In the the "curse-of-dimensionality" (II] is by finding a recursion in the cost-
latter algorithm, used in the F-8 aircraft problem in (21, the control is to-go, which here does not exist because of the parameter uncertainty.
formed as a weighted sum of the model-optimal controls. Several computable suboptimal control algorithms for this problem do

Lastly. while the MAD algorithm is designed for eventual on-line exist, however, including two of particular interest here. They are the
computational feasibility, it is more expensive than HCE and DUL. It is so-called heunstic certainty equivalence (HCE) algorithm 161, and the
also pointed out that MAD has a built-in feature to help determine a Deshp~nde-Upadhyay-Lainiotis (DUL) algorithm 113). In the HCE algo-
priori, in a non-Monte-Carlo fashion, when the performance improve- nthm. a current best estimate of 0 is computed as
ments obtainable with MAD are large enough to warrant the added
computing load. 9(1)- (2.11)

If.~~~~ A,(t)m*,.i IAlt)
II. Paost I'M FiRML t Aiiie. 0(t) is then used as if it were the true parameter vector, under which

Consider controlling the linear system described by the input-output assumption the optimum control is easily computed. Thus, in a heuristic
model 141 manner, certainty equivalence (though untrue) is enforced. In the DUL

algorithm, the control decision is obtained as
r( )- 4 q- Jv t I) B )u(t- )+e(t) (2.1) A

%here u(t)- A,()u,(t) (2.12)

'4(q )" a, + aq '+... + aq " (2.2) where u,() is the optimum control which would result if 0-, were in
B(q-')"b,+b 2q '+ . b,,q .- i' (2.3) fact true (apin easily computed). Both the HCE and DUL algorithm

are passively adaptive; they do not assess the effect which the cu rent
control decision will have on future learning. HCE and DUL are

'To te best knowledge of the author, past companisons between dfferent control algorithms of the feedback type, rather than of the truly closed-loop type
atonthme were Imuted to sample means. Iesvins open the quesuon of sitaustiai iapiS-
cance of the observed differences. as defined in 61. The optimum control to be derived by approximation

ia ' '" " ," • " " .% % .' % ." 5,*%" % • .. . . . . . . .
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*of (2.10) is a closed-loop control. capable of taking advantage of the dual E[J*(i+ l)IZ(t)i*(t)I
*effect 171 of the control in this problem. m l(~)[~~)Z1 )L+I,-~

*For the moment, attention is focused on the two-model (M-=2) case f - i0)(~+1[~+ )Lt ,11~

*since, as will be shown in Section I. solutin of the general M-model +[I - I0,+ l)[[C(,+ 1)IZ(,+ 1).L(:+ I).*A 1
case (M - 2) may, be obtained by solving a fixed set of two-model
subproblems. The problem of pairwise (MI-2) model discrnminations -p[flUt+ I)IZ(t).u(e)Idfl(t+ 1) (3.10)

*will be shown to embody the basic dualiti, of the control.
W where p[II(t + I 1Z:t.u~th1 is the preposterior probability density func-

tion of [1(i + 1), which is the information state for the parameters at
1ll. PlREOSTEsuioRA A.YSIS AN4D rEAPPROXI.MATE SOLLTno%,N 1+1. The term prepostenor 1181 means that this is the prior density (with

*O orTE SrOx HASTIc DYNsitic PROGRAMWiNG EQUATION respect to time r + I) of the posterior rl(t + 1). conditioned on the

Consider the case W -2 with the probabilities defined in (2 5) information at t. This density is obtained using (3.9) '

A, (0)= I (0 l. '%2(o) I - "1(0) (3.0) pjlI(t+ l)IZ(Il)i'(t)1 = I pjy'+ l)IZ(:).u(:1

-where the pnor 1140 is known. X______ ()x
- ~~In order to obtain a computationally implementable algonthm. the H(+[-Hu-)

*cost-to-go in (2.10) will be approximated as follows: the future controls
(for io 1 + 1) will be assumed of fixed structure, they wvill be of the DUL [\ ~2 lH(t)[lI - 1710+lI)]

*type but with time-varying probabilities as more information becomes 2,\ (+)~ +~ I-l()~f+I
a% aailable to the controller. This is expressed as follows: L

=EU4lIZ: min.t+ ' (3.2)

mm l),(~).~i)~ - I __ .2  - InI1)jIu+)

%v here Lft + 1) is the set of all parameters in the controller structure fromL X i(+I)'.(+I) [-11)1( +I

t I through the end. Using the total prohabilit,. theorem. the optimum 2

* cost-to-go in (3 2) mas be wntten as + UP(-. 1+ +~(' i)) J3.)
-. Jl+l)- min (lift+)E[Ct+l)Z:t+l).I-l,+l.=

fit+') The integration required in (3.10) is stilt not feasible to perform, even
+ I - lift + l)JE(C(t + Iti/It. 1),L(t + l)(6f 3.3) given knowledge of the exact preposterior density (3.11). An approxi-

mate solution to this integration is obtained by taking advantage of a
where fundamental property of the prepostenior density: as the sigsl-o-notse

11(i ltP1662 ,/ 4-l (.4) ratio

;s gisen bN Baics' rule SR .1,,.t;(+)'(.2

p1,11+ I) 10).(:.= 0, Il increases, the ability to discriminate between the two rr'odels increases,
11(1+.(I It-------U -M and the prepostenor density. in (3.11) exhibits a distinct liimodal char-

acter (see 191); most of the density becomes conctntrated around two
P1 i-(1+ I)Z ) t). 6[1(ldistinct locations, say lli(t + I) and ll(t + 1). In the timit as SNR-o..

l~ pi~( +I )7( l~ur).=6, + I II) fl t + 1)171 t).U( ) *-*~l p[ll(1+ I)izmm.(,i becomes the weighted sum of two delta functions

(3.5) LIM pjll(:+I) Z(:).u(1)j

-where =l)51u I-lj[-frj5Hi 1.(3.13)

pj l+I);Z(i).u( 1)6=6,1= exp y +1 +1)]1These observations suggest using the following approximate prepostenor
2 ~t IX -A d e n stIy .3

(3.6)

for I 1. 2. If .4). A, denote the poi~nomial, oif Q 2) and 42 3). respec- weetedlafnto oain i:+UadI:14I aif
iites. formed assuming 9-9, is true, then 0l 7) hecomes eetedlafnto oaioslt )ad121 )S'S

"f+I )-A'Vi) + RMuIt (3.8)
The locaions Ill(/+ 1) and 112(1 + I may be obtained by moment

F'rom (3.5) one can obtain the inverse tran sformation from I If + I) it) matching the * are chosen 'o that the first two moment% of IItr + I)
the latest obsers ation .vU + 1) produced bys the approxmate deisit% 0.14) match those oif the true

I densits (3.11) Such ai technique hAs been used with success in [81.[91. A
i* s(+ I)t- -I~(+ 1) +)' 2(t+ I) simple and accurate tec~hnique to carr-s this out is described in Appendix

2 I

x 2 ) While the approximate prepostenor density has now been established.
V2i + I) s 110+ ) I(111IW14+I evaluation oif the cost-to-go in (3 10) still requires a minimization with

respect to the set 1.): + It of inme-varying) controller parameters from
* Pius. the outer expectation on the right-hand side of (3.2), which is- over i- t + I to the end of the control penoid. a set which, of course, depends

I + 1). tan be replaced by an expectation o% er IIli + 1) as follows: (in the statistic flu + It. An approximate solution to the minimiza,1tion in
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(3.10), which is easy to implement, is obtained by assuming a future 1)r+ )- a',(,).j,(j). +=,+ I. v- (4.4)
sequence of DUL type controls represented by/E(t + I):

The control gains are given by the weighted sums 1131

-1 j 'n(t + I)E[ C(t+ I)IZ(t + l),L(t + 1),@-0,] ]Q,'J2' 45

. 1 lwhere a2.a2 are the model-optimal gains. An analogous equation yields

+[It-l(t+ l)IE[C(,+ l)IZ(,+ l).E(,+ A, .
The nominal postenor probability that the controller will attach to the

. {(lt)5[Fl(t+ I)-Fl('+ I)] [l -1(t)] parameter being 0-0i. when in fact it is 0.- 9j.j- or 2. and at t+ lit

-[81(t+ I)- 2(1+ 1)1) dH(t+ I). (3.16) started with l,(t + 1). I -I or 2. is. using (3.5)

Performing the integration, (3.16) becomes + 1 12- ( )  I )i) (i+) -I

*Jlt + l.u(')1 - 1(,)In,(,+ I)J,,[ t+ l..i( 1). ,,(, 1+ l).9O 2 (4.6)

+H(1)11 -H(t+i)]J,2 [t+lLu().+1. 2(1+l).0-0 2  i-t+l. "'.N-2; S0(t + I) (t + I)

+ [I - F(r)HI,(t + I)J21[r+ I.u(t)..,(g+ l).e0- where the "mismatched" (k *j) prediction is

+ I,- n1 ()[I - n,(, + 1)I .2 1 + 1.,(-,, + L ).-]. ,(a +, ) " , ,(i++)IZ++(i).,+.(i).e-9k1

(3.17) --. B& ,(i)i 85u,,(i): k *j (4.7)

Equation (3.17) represents the approximate cost-to-go resulting from a with #() the nominal information vector at time i.

particular control choice u(t). The nominal sequence of control parame- Equation (4.6) specifies the four "learning curves" used to compute

ters Lj(t + 1). j- 1,2 consists of a DUL weighted sum of model control the cost-to-go (3.17) in order obtain a feasible solution to the

gains. This sum is computed with nominal weighting factors given by: stochastic dynamic programmii.? :.,ation (2.10). Note that if j- I then

1) [1(/ + 1)- 111(t + I) as the initial sufficient statistic for 0 at t + I. R&0 converges toward unity for U, th I- I and 2; however, because of

2) subsequent nominal posterior probabilities (,,() that 0=0, which (3.15) it will converge faster if 1-I. Conversely, if j-2. then Q& con-

evolve as i- t + 2.. .N - I when this DUI. control is applied to the verges toward zero, again for both I- 12, but faster if 1-2.

system with 0=0,.
Note that the model control gains are obtained from a standard linear V. SOME REMARKS ON THE PROPERTIES OF THE NEW ALoORITHm

quadratic problem with known parameters. The term .u which is the
corresponding cost. is obtained from a standard recursion for a known From (2.9), (2.10). (3.16). and (3.17) it can be seen that the MAD
linear system with 0-0., quadratic cost. and a given set of control control at time I is obtained by numerically locating a minimum with
parameters LE,(t + I). See, for example. (10). respect to u(i) of the cost function

IV. THE NOMINAL SEQUENCE OF FL-n.'R PosfToRioR fut (
PROBABILITIES where Jit+ I.u(t)] is the approximate cost-to-go as given by (3.17). A

golden section line search combined with a quadratic fit [51 may be used
The nominal future posterior probabilities l,,(i) are generated by to locate uMAD(t). where the HCE and DUL algorithm controls are used

constructing a future observation and control scenario, based on the set the initial control search window. C evidence mdi-to se h nta oto erhwno.Computational eiec ni
statistical information contained in the approximate prepostenor density cates that between 5 and 8 function evaluations .[t+ Iu(t)] (5-8 diffe-
function (3.14). This density indicates that. given a specific control tsta ewe nd8fnto vlain Jt ,~) 58dfe

rent values of u(t)) are sufficient to achieve high accuracy in locating the
decision u(t). with probability 11(t) the posterior probability n(t+ I) will minimum.
become l-l(i+l), and with probabili4* [I-TI(t)] the posterior willbecome n2(1+ ')- asn w3. ith ollowtha[t- the poservtior wicl By using the approximate prepostenor density (3.14), consideration of
become prd(c + Ip). Using (3.9) it follows that the observation which the possible values 11(t + I) may take on is reduced to two "most crucial"
would produce the posterior "1(+ +)-l,( + 1). 1-1. 2. is given by values, fli(t+ I) and 12(1t 1). Equation (3.17) indicates then that four

2  possible events need to be considered: f/1(t+ 1) becomes the posterior
I ,(i+ i (t l)+; 2(t+ i01+ -t+---- t+- with the true system &-9,; n,( + 1) becomes the posterior but 0-02 is
2 Y20 + ) (1+ 1) true; fli(t+ I) is the statistic but 0-01; and n12(1+ 1) occurs with the

Inf 11(1)11 - t(t+ I)] true system 0-0 2 . The probabilities of these four events occurring are',. .n(ii -]--i(i¥ J (.+ n(t)n,(,+ I). n(,){l- i,(,+Il~l, ( - n(,)ln,(t+ 1), and [ - n(,)ll-

r1-(t+ 1)]. respectively. The cost which will be incurred if the event

The terms I11(t + I). i (t + I) are now used as initial conditions at i- t + I described by the {fl,(t + 1), 0,) pair happens is J4 +I.u(t), Lobt + I),.0-

for a nominal future observation and control sequence; nominal outputs 01].

'.j ) for a given pair (ij) are generated by replacing e(i) by its mean, Consider now how Jo realistically represents the cost of such an event.
which is zero, in (2. 1) with 0 - 01: First assume I-j; for example, take i-j-I. Due to the condition

described by (3.15). the output 1(t + I) given by (4.1) with I-I which

,".,G + 1)A,.0)+B i-t+ 1.-N -2; y(I+ 1)-,(I+ 1) would produce this ni (t+ I) would more likely come from a system
where 0-0, were true. Since j- I in JI this represents convergence of- 1,2 (4.2) 1(1+ 1)- 11,(0 +) > n() in the right direction, which is toward unity.

In the future nominal control scenano described in Section IV the
The nominal controls #(i) are generated using a DUL control policy probabilities 12,(1) will then converge steadily toward unity, since the

mismatched predicted observation (4.7) appears as a negative exponent
"s (1-g+ I...N I (4.3) in (4.6). If I-j-2 the exponent in (4.6) is positive and 1122(i) converges

to zero. Now consider what happens if I,"j; for example, if I-2,j- I.
where x is a sutable state vector corresponding to (2. 1) and go represents The true system has 0-0, but a nominal observation ji(t + 1) occurs
the future nominal state corresponding to-y,, which was specified above, which makes (t + I)-1 -I(t+ I)< 1(t); i.e., (t + I) goes in the wrong
The set of control parameters is direction. In the subsequent nominal control scenario the observations

.j.
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i210() come from the true system with 0 ,=- . and thus, of course, the . . r,

posteriors "l21(i) will recover from the "'bad" initial Qz(t+ )fl 2 (f+ I).
but only aftet some time. Meanwhile. the control ains L2I(t+ I) have

been closer to the optimum gains of the wrong system (9-9O), thus
accumulating an added cost represented by J2 l. Similar statements may 0 .. -- 9'92

be made about the event I- I. j-2. Thus. the cross terms J4, I *j,

represent the costs incurred if learning is degraded by bad observations Fai I "Learning curves- for evaluaton of the €oatto-go

at t + 1. Correspondingly. it is expected that

Jl, >J and J 2 >J 22  (5.2) Equation (6.4) states the following.
on aTheorem: For a specified u(t) the cost-to-go J(r + 1), given that one ofon a range of control values containing the HCE, DUL. and MAD Mmoes0,-I..M scrctcabebaid•sflw.

controls. Computational evidence in Section VII indicates that this is models S. j - 1. , M is correct, can be obtained as follows.

" indeed so. I) First compute the cost-to-go which results if one of either ,.,
k -j, is true; this is done for each of M - M(M - I)/2 distinct model

Thus, the algorithm MAD is sensitive to the anticipated rate of future pairs.
learning, and, if needed, its present decision will affect that learning rate 2) Compute the optimum model costs (, true).j- 1, M and form
appropriately. the overall cost-to-go according to (6.4).

The evolution of the information about the system during the process, Of course, all the expectations in (6.4) are conditioned on the same
described in detail in the previous two sections, can also be summarized foration n choice ctioe oe sare• m ictnalfor asm Fg. I Th curen prbablityl-It) voles nto information state Z(t) and control choice u(t). The model costs are
in pictorial form as in Fig. 1. The current probability fr() evolves Into easily computed from a standard linear quadratic problem. For each of
one of the two values n, Or 112 from which four 'learning"~ curves tetomdlcssEJr4 ) ()u) 5 UI~ napoiaecs
follow. These curves are labeled lj and they correspond to the four cost the two-modei costs E[J(t+ I) Z(t),u(t), W U WJJ an approximate cost
components from (3.17). This is the essence of the novel approach that is computed using the MAD algorithm of Sections III-V. Since thecopnet frme.7.Ti steesneo h oe prahta vent Wj, U W means that either Ok or 0, is true, the required sufficient
yields the closed-loop (71 approximation of the stochastic dynamic pro-
grammig presented here. statistic fkj(/) in the two-model MAD cost evaluation for the specifiedpair of models is

VI. THE GENERAL M-MODEL MAD CoNrOL ALooRiTH- Fi(t)D A(t) (6.5)

Extension of the two-model MAD algorithm described in Sections A5(t+A(t)
III- V to include the general case of M models. M > 2. is now discussed. thus maintaining proper normalization.
It will be shown that the M-model MAD algorithm consists of perform- The general M-model (M > 2) MAD algorithm thus searches for a
ing two-model cost computations for each of the distinct pairs of models minimum in
using the two-model MAD algorithm, along with one-model optimum
cost computations for an appropriate adjustment. I2

To begin the development, consider first the case M=3. Define W, [t,u(t)- r(l)[u(t)-,(i)J +Jft+ l,u(0) (6.6)
W2, and W3 as the three mutually exclusive and exhaustive events 0 =., where J it+ 1, t(t)] is given by (6.4).
0=0 2, and 0-03 true, respectively. Then the mixed probability expres-
sion [251 p[J. W, u W2 u W31. where J is a random variable, can be
written as VII. NUMERICAL EXAMPLES

p[J, 1"' U W2U W;3]-p[J.Wu W 2]+PJW I U W 3]+p[J. W2 U W3] In the numerical studies, attention was focused on studying the

-p[J. W J-p[J. W2J -p[J.W3J-p[JJ (6.1) performance and characteristics of the MAD algorithm for the case
M-2. since the pairwise model discrimination procedure constitutes the

where the union Wk u W signifies the event that one of @. .is the true very essence of the actively adaptive decision making process of the
parameter vector, and where W, u W2 u W3 is the sure event (note that algorithm. Performance will be compared with that of the passively
W1 ') K () W3 -0. the null set). Using (6.1) for a cost-to-go J(1 + I), one adaptive HCE and DUL algorithms.
can wnte Example I: A second-order system (n-2) is considered with two

poles at 0.7. It is not certain whether the true system's zero is at -0.225
p[J(f+ lZ(t).u(tl) ] .. [Ai(I)+ \(t)1p[J(t+ I)IZ(f).u(f), WU W2] or at -0.9. Correspondingly, the true system parameter vector is one of

S+[A(I)+ A3(t)]p[J(t+ I)IZ(t),u(t), Wu W31 the following:

+A3(1))PJJ(t + I)IZ(/).u(/) W2U W31 O 1.4 -0.49 2 0.451 (7.1)

-Ai(t)p[J('+ I)IZ(g).u(t). W1] - A(t)p[J(t+ I)IZ(t),ui(t). WO - 1.4 -0.49 I 0.91 (7.2)

- A3(t)p[J( + l)IZ(t).u(t)), W1]. (6.2)
which are considered a prtori equiprobable. The initial output is y(O)-

From (6.2) it follows that 0.1 and it is desired to make it follow over N - 5 time steps the reference

E[J(t+ I) Z().u(t) A1[A0()+.,2()1EIJ(1t+ I)+Z(t),u(t), W W21 trajectory (for t-0.1,-.. ,5)

+[.\(t)+A E(t)]E[J(t+l)IZ(t),ut), W , 4"_,1 4 Y, 0.I 0.5 I 2 2.5 101. (7.3)

+ 11%2(t) + .\ 3(t)]IE[IJ( t + 1) 1 Z(0.).W tW2 u W31 The corresponding weightings in the cost (2.8) for i- .. ,5 were

- (t I)EJ(t+ l)[Z().u(i), , -. Jt )E[J(t+ I)Z(t).u(t). W2 chosen as
-A 3(f)E[J( t+ I)IZ(t),u(t), 1'i]. (6.3)

9-10 I 2 3 s so1. (7.4)
Now. for arbitrary M P 2 it can he shown (see, e.g.. [171) that

No penalty was attached to the control. Note that this would be a
straightforward minimum variance controller about a desired output if

V- I A the parameters were known 14). The process noise standard deviation
,.-V,,, )+ :(,+ l)'Z(,.u(, .W W] was chosen as A- 1.5.

A Monte Carlo simulation procedure was conducted to compare the

-(M-2) A(t)E[J(t+ lYZ(t).u(t). Wj. (6.4) performance of the MAD control algorithm with the performances of
2. ;the HCE and DUL algorithms, when each is applied to this problem.

.. . ,-.. . . " , - ...- ".-. -,---- -... ,-.,. -,. - .- . - .. ,
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TABLEI TABLE II
SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS FOR STATISTICAL TEST FOR ALGORilhM COMPARISONS FOR EXAMPLE I

ExAMPLE I

AlgoritmS I 'est Estilated ,ee of

Algoritnm OPT HCE OL 4A compared 'proye *nt inificdace

Sample Mean 63.8 1l5 '3
NCE - DUL 3.63 f 67 7 "5 2 3'

Saople standard 73 2 233 ?S? 135 HCE - MAD 5.34 13 6' 3 72 33 0. ~ ~~~deviation 1 '

DUL - K4D 4V21 1 1 7

TABLE IV
TABLE III STATISTICAL TEST FOR ALGORITHM COMPARISONS FOR EXAMPLE 2

SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS FOR

E X A M P L E 2 A l o r i t m s IT T e s t s ,
compared Statistic ,IooneoeO1 3/..

Algori thi OPT HCE OLL MAD

"CE - DLI 4?.9t 13 69 3.13 16
- Sample Mean 60.5 264 221 109 6

K.' MAD 0 ;54.46 ,66 5.ZO 59

*Samiple standard 73.2 W4 404 13 DUL MAL 111 S1 26 V .1
e tiotI devatin II

Statistical tests were made on the results of 200 independent Monte with 99.87 percent confidence). The estimated improvement of 31 per-
' Carlo runs. Each of the 200 sets of disturbances was used to generate a cent is statistically significant.
- run for each of the three control algorithms examined. For ()200- Note that MAD has gone about 55 percent of the way between DUL

100 runs, the true parameter vector was set at 0- 01 and for [I - rl(0)]- and OPT; the latter is, however, an unachievable lower bound because it

200- 100 runs it was set at - 02. Sample means and variances of the assumes the parameters known. The Bayesian optimal controller for
Monte Carlo costs C, defined by (2.8) were computed. unknown parameters (obtained from the stochastic dynamic program-

Table I contains the results. The column labeled OPT is the perfor- ming) is somewhere between OPT and MAD. Thus. MAD seems to have
mance for the same disturbances when the optimal control with 0 known gone "most of the way" towards the Bayesian optimum.

is used. This table gives the first indication of the improvement MAD Example 2: This example is the same as the first one except for the

gives over HCE and DUL both in mean cost reduction and reduction in cost weightinp, which are
the variability of the performance.

Note that Table I does not provide a rigorous argument that the actual -[0 I I 1 5 50 ]. (7.8)

performances (expected costs) are ordered as the sample means indicate. and the reference trajectory
Appendix II presents a rigorous statistical test that provides the answer
to the question of whether the expected values of the costU are different.

To carry out this test, three new data sequences are formed by taking
the differences of the cost samples generated using the same random The resulting average cost and standard deviations from 200 Monte
variables for each of the methods HCE. DUL, MAD. That is Carlo runs are shown in Table Ill.

Table IV indicates the following.
4D CNCE-- C., DL (7.5) I) The hypothesis that DUL is better than HCE is accepted. The

IPMCHCE.C CMAD (7.6) estimated improvement of 16 percent is statistically significant (a<0.1
percent).

IPM. _C DUL C ,MAD (7.7) 2) The hypotheses that MAD is better than both HCE and DUL are

accepted (a< 0.001 percent).
for i- l," ,200. The sample means A of the differences and their Also note that MAD reduces by 50 percent the cost incurred with
standard deviations o for the various algorithms are given in Table 11. DUL, based on the 200 Monte Carlo runs.

Assuming that a hypothesis can be accepted only if the probability of Next, the learning properties of the above algorithms are illustrated by
error (level of significance) a is less than 5 percent. i.e., the confidence presenting further results from the simulations of Example 2. Table V
(I - a) is at least 95 percent, the threshold against which we compare the shows in the first part the evolution in time of the posterior probability
test statistic i/o3 is u-,1.65. The test statistic has to exceed the that 0-0, (averaged over 100 runs) when the true system had 0-0.I
threshold in order to accept the hypothesis. The conclusions that can be These probabilities all tend to unity but the active learning feature of

%, drawn for this problem from Table If are the following. MAD causes its probability to converge faster. Thus, active probing, the
I) The hypothesis that DUL is better than HCE cannot be accepted. need for which is realized only by MAD, pays off. The second part of

The estimated improvement of 2 percent is not statistically significant this table presents the corresponding results for the case 0-2 true.
(a -30 percent is too large a probability of error to accept that DUL is where convergence to zero (as required) is again faster for MAD.

* better than HCE). The need for active learning as sensed by MAD is illustrated in Table
2) The hypothesis that MAD is better than HCE is accepted (actually VI. For various possible values of the control at period I, the MAD

with 99.99 percent confidence). The estimated improvement (decrease in algorithm evaluates the future learning opportunities. For u(l)-4.3, the
cost) of 33 percent is statistically significant. preposterior density characterized by nu and 1la indicates that not

3) The hypothesis that MAD is better than DUL is accepted (actually enough learning will take place: the contribution of J21 (which is the

•~~~ ~ .= . . . .i ,.r. .t~llll~~ .. li~il l~li I . . .. . .



IMU TRANSACTIONS ON AUTOMATIC CONTMOL, VOL. AC-25, No. 4. AUOVST 1980 709

TABLE V TABLE VI
EVOLUTION OF P {*-,Z(i)l COST BEAD OwN AsD LEARNTNo FOR MAD

1,AcTt 4.304 127.4 0.9398 0.05919 64.07 67.92 2090 66.39

- 4.50 112 0 0.9473 0.05185 64.18 b7.38 1787 65.87
50M 3 53 x . x 30500 500 4.7S o 61.96 0.9540 0.04518 65.65 67.10 714.2 65.39

l. - 4 6 1 497 C 500 4.90( 69.74 0.9602 0.03917 66.68 66.96 181.7 64.94
KAO9 3 9~ 5.09: 60 bS 0.9655 0.03388 67.86 66.92 115.0 64.55

37 US, ): 2253 4 5.30, 63.97 0.9704 0.02910 69.22 66.98 112.0 64.18
1423 .43 3901 5.50( 69 53 0.9745 0.02502 70.73 67.13 118.3 63.56

1 ___. 5.701 70.20 0.9781 0,02154 72.40 67.37 126.4 63.58

5.90q 70.97 0.9913 0.01859 74.23 67.72 135.1 63.34

result of a mismatched controller that does not learn fast enough what (+ i I + 1 () exp 2,1 - 1-)
the true system is) to the cost makes J (see (5.l)j large. For larger u(I), '(t) 2X2

I the learning is faster but after a point its price exceeds the benefit. -1
Examination of Table VI also gives valuable insight into the problem +( - ly- (f+ I)] j-Ior2 (A.3)

of determining when there is value in using an actively adaptive con-
troller like MAD: when the penalty for mismatched controllers is large where
and the contribution to the cost is significant.

{(+ )-),(+I)-): 1 ) (A.4)

VIII. SL.0oaRY AND CONCLUSIONS and

The concept of preposterior analysis has been successfully used to
derive an approximation to the stochastic dynamic programming equa- (A(.+ l)-5(t+ l)LyQ+- l)-j(+ )].)
tion for the control of systems with discrete-valued random parameters.
The resulting algorithm, called model adaptive dual control, is the only Using (A.3)-(A.5) and (3.5), the integration (A.2) may be shown to
actively adaptive controller for this class of systems. A rigorous reduce to
methodology for comparison of control algorithms has been presented
and used to show that the new actively adaptive controller yields 2(t+I)- V2 Ar+i) n(t)
statistically significant performance improvement over two state-of-the
art passively adaptive controllers. The question of when it is worthwhile +[I-n(,)1f' f-(ro)e-idr, (A.3)
to use an actively adaptive controller (which is relatively expensive)
versus a passively adaptive one has been also addressed. While Monte where
Carlo studies combined with the appropriate statistical analysis tech- + I)
niques are the best tool, a decomposition of the cost-to-go can be utilized (A.4)
to assess inexpensively whether one can expect a significant improve- 1)
ment when using this actively adaptive control versus a passive one.
Based on our experience, the class of problems in which one can expect and
benefit from using an actively adaptive control is where there is heavy ( I-I(s) ( +I)
terminal state penalty and the control period is relatively short, i.e.. f(i)" I + exp-
passive learning does not suffice and there is opportunity and need for H(t)

*active learning. In general, active adaptation can be expected to improve 1V201r _l-I,+1]j12 A5the transient behavior in adaptive control by speeding up the adaptation
process.

The integrals in (A.3) reduce to simple finite length summations throuh
- Ithe use of Hermitian quadrature (121; this technique is described by

• APPENDIX I
MOMPIr MATCHING FOR TH E APPROXIMATE PPJPOST'JUOR -t

DENSIrTY fJJ(r)e-dr- H(yX) (A.6)

* The moment matching technique used to obtain fl,{t+ I), /-1,2, in
the approximate prepostenor density (3.14) is now described. First where the are the zeros of Hermite orthogonal polynomials and the H1
consider findina the true moments Efl(t+l)IZ(t),u(t)]. E(l 2(t+ are the respective Hermite coefficients. The H,,X are weU tabulated (12.

)lZ(). u(t)J l 2(' + I). From the fundamental theorem of expectation The number of terms It in the expansion is chosen large enough to
and (3.5) achieve desired accuracy in (A.6).

Using (A.6), (A.3) becomes
.,E1 l l ( t + )j Z(t), u(t)] - 1l1 t) (A.1) j,

h must I(t+ l)-V 2 M(:+ I) H,{fn(t)f,(y.,) + I -fn(tslj,(t,)).
tio + l) must be obtained by numencal integration using either (3.11) W-i
or (3.5) combined with p[y(t+ 1)1Z(i).u(,). The latter approach lends (A.7)
itself to a particularly simple and accurate integration procedure. Thus,
take Equating (A.l) and (A.7) to the respective momenta produced by (3.14)

• gives
l 2-(I+ )- fl 2(y(t+ I)Jp[y(t+ I)IZ(s).u(t)]4s(j+ I). (A.2) gi[e(

rn(t)-rl(t)rnl(t+ j)+[t -rn(t)]ln(t+ l) (A.11)

Now note from (3 5) that T2 (r+ I)- l()l(t+ I)+(I - l(t)|l(i+ I). (A.9)

• .* o -o . ~ o • I * * * - o o - ,. - • . . . o - o o O o ° - . . . . . - o * °
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Using inequality (3.15). (A.8) and (A.9) then yield the desired delta AcKowLEwouEN
function locations

Stimulating conversations with Dr. B. Witternmark are gratefully ac-

f r170) T2 1( 1/ AH0 knowledged.
I 12(t+) - 1) A )
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The test is carried out by examining the set of independent samples

Q - C)(8.6)

as to whether their true mean A can be accepted as being positive with
%high confidence (low a). Assuming S large enough, the hypothesis H, is

accepted if

A > Ws(11.7)

*where

S~.

A, (B.8)

0 2 i- (, 1), 99

and. in view of the central limit theorem. 1t is taken from the normal
distribution tables. For example, for it 1.65. a -5 percent. and for
0 - 2.33. a - I percent. The corresponding confidence in the itatement
that algorithm Itis superior to 2 is then I - a.
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Stochastic Dynamic Programming:
Caution and Probing

YAAKOV BAR-SHALOM. SENIOR MEMBER. IEEE

. 4 hltrat f -''he purpose of this. paper i% to unit% the concepl% of caution point out which are the stochastic control problems where substantial
and probing put forth h Feldbaum[ 141 with the mathematical technique of improvements can be expected from using a sophisticated algorithm versus

s stochatic d.namic programming originated b.% Bellman 15). The decom- a simple one.
.-.'. p~osition of the expected cost in a stochastic control problem. recentl.

deseloped in 181. is used to assess, quantitatisel% the caution and probing I. INTRODUCTION
effect% of the s%,tem uncertainties on the control. It is shown how in some
problems. because of the uncertainties., the control becomes cautious (Ies.s HIS PAPER reviews recent work in the area of stochas-

* .aggresise .e while in other problems. it will probe (b% becoming more 1 tic control and shows how the concepts of caution and
aggre,,,ite) in order to enhance the estimation identification while control- probing. originated by Feidbaum 114), can be unified with
ling thek sstem. Following this a classification of stochastic control prob- A . p TheBellman's dyai rgrm igtchiu 5 . 1. e
Ihm accordini to the dominant effect is dis-cussed. This. is then used to

iAc rconcepts of caution and probing, developed by Feldbaum. 0 ~ % .n~uN,rTI rcv.cicd April 6. 1980. revis.ed Januan 14, IY8I and March
21. I.I ..Tis. work was ,upportcd tn part h1 h, National Siicncc 1141 about 20 years ago and also discussed in 1161. dealt
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In the presence of uncertaint%. modeled bN random quent decisions fully determines the future evolution of the
variables or stochastic processes. there is usuall a de- s stem. In the stochastic case the information set is, loosely,
terioration of the system performance. which can he mca- %hat the controller knows about the system. This will be
sured b- an increase in the (expected) loss function corn- discussed in more detail next.
pared to the deterministic case. In order to reduce the Consider the following general stochastic control prob-
increase in tile loss function the controller will tend to be len. The state x evolves according to the equation
''cautious." a propert% know n in tile decision theor\ litera-
ture a,, "risk a\ersion" 1121. This phenomenon occurs for X(k + I ) -. [A.x (A ). u( k) t (k )j A :0. I.

con\e\ loss functions that the decision maker (controller) (2.1)
%Nant, to minimize, like in most control problems. On the
other hand. in multistage problem,, %here observations are where u is the control and v is the process noise. The
made on the sootern at each -stage. the :ontroller might be measurements are described b,,
Able to carry out what has been called ''actie information i-)hk. \(k),w(k)] k= ... (2.2)
gatlhering" or "probing" of the ssten for estimation en-
hancenient. This is possible \then the controller affects not where w is the measurement noise. The information set at

* onl\ the state of the ssten but also the qualitt of the time A is assumed to be the past measurements and con-
estimation process. i.e.. has the so-called "'dual effect.- trols

This paper intend, to provide a tutorial on these aspects { ) ("IA - } DW - i (2.3)
of stochastic control by a suitable presentation of the basic
concepts embodied in the stochastic d\namic program- where

"" ming. \,hen the caution and probing phenomena are pre- t {v( / . (u(j)} (2.4)
sent in the multistage problems. the optimal solution is not
kilon. In \iet% of this, the insight is proyided b\ consid- and subscript i- 0 is omitted. The inclusion property in
ering a suboptiunal algorithl that has the feature, of the (2.3) points to the fact that the sequence of information as
optimal one. assumed here i. nested - each contains its predecessor.

Section II discusses the information state in the multi- Since (2.3) is growing with k it is of interest when a
tage control problem of a stochastic s\,stem. The formula- (nongrowing) information state can replace (2.3).

tWim of ;he principle of optimalit_ for stochastic systems Note that .\tk) is a state only in the deterministic
and thc re, uhing stochastic d ,namic programming equa- context when. together with -"' , it fully determines x(j).
tion for additi\e cost functions are discussed in Section III. VJ>k, i.e.. x(k ) summarizes the past of the system. The
It is pointed out hots the "preposterior anal\sis"' technique stochastic counterpart of this is the "information state."
is a direct consequence of the principle tof optimalit',. The The information state is defined as a vector-valued vari-
definition of the dual effect and the t'.pes of approximate able or a function that summarizes the past (i.e.. it can
,olution, of the stochastic dynam.ic programming are the replace I-)when we want to characterize (probabilistically)
topi: of Section IV. The "closed-loop" approximation of the future evolution of the system. This is more general
the stochastic d\namic programming using the "wide-sense" than the "'informative statistic" of Striebel 1261 which is,

,% information state 181. J291. [301 i,, .,hk)%;n in Section V to roughly, what the optimal controller (for the problem
leid to a decomposition of the expected cost into three under consideration) needs from the past data (2.3).
terms. I t o of' these terils can be associated directlx ssith It is assumed in the sequel that all the pertinent proba-

- th caution and probing ef'fects discussLed earlier giving bilitv densities exist. Discrete-valued random variables will
thIi a quantitati.e meas ure of these effects. It is shown in have a probability den.itN function (pdf) with Dirac delta
Section VI hot% one can classif stochastic control prob- functions at the locations of the point masses.
•lci, ,accordin to the dominant tcrm in the cost decom- If both sequences of process and measurement noises are
poitinn. This i, then illustrated %a a number of examples white and mutually independent, then at time k the condi-
%here stochastic control problems that are probing- tional probability densit, function of the vector x( k)
dominated, caution-dominated, and essentiall\ determinis-
tic are presented. The effect of sariots state weightings in & p[x(k )j IA] (2.5)

. tile CONt function and the anticipated future learning arethe ostfuntio an th aniciptedfutre earingareis an information state. This can be seen from the follow-
also discussed. Conclusions are presented in Section VII.

ing. The conditional density of x(k+ 1) can be written

using Bayes' rule
II. Titf NIORMAlION SIA I F IN A SIo(IIASI R I

(ON I ROL PROHI :BI p[x(k 4 1)11'. p I)x(k+ I1'. u(k

I he principle of optlntaht, of Bellnan 151 c.in be stated .p x( k + I)1 . u( k )] (2.6)
", f,,lhA~ss for stochastic problems: at an% lime. ss hatleer

the present inforrmation and past dcciion, tile remaining where ( is a normalization constant.

decisions must constitute an optimal polic\ with regard to t, " ~Rig orouN]I,, the c.onditional densit, should be %rnnen p[.- Y :'/ t,
, the current information set. hecause this is conditioned on the sigma-algebra generated b the inca-

In the deterministic case the information set is the state surements but it is noi .ell-defined unless the values of past controls or
control functions are indicated 1261 For A 0 this is the prior densit, of

of the system. This, together with the controller's subse- the state

.,... .... :. ...,* -'. ... ... ', ... ... ,.. ... .,.o .. ... ... . .. ... . .. .. ... .. ,., .- .,,;'-,
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If the measurement nloise is white ( w( k + 1) conditioned Ill. FROM HTf PRI NCIPI.E OE OPTIMALITY TO
onl sI A - 1 has to he independent of i 1). J-k. i.e.. state STOCHASI DYNAMIC PROGRAMMING
dependent measurement noise is allowed). then

Consider the problem where the number N of time steps
p[ I )1-x( k-- 1). 1'. u(k )] p[ 0~k- I 1)1.v( A+~ 1)] is finite and deterministic. In general, the terminal time can

(2.7) be a random variable. possibly depending on the state or a
decision variable. The present discussion is limited to the

I the control is anywa% irrele% ant in the conditioning). fixed terminal time problems. See. e.g.. [Ill, j1181 for discus-
For anl arhitrarN value of the control at k one has sions on the free end-time problem. Denote the (scalar)

cost function of the problem as

p[A )~A, (A)J x(A).(2.8) Since this is a randomi variable, the minimization (in gen-

If te poces nise equnceis hiteandindpenenteral. extremization) is done in the Bayesian approach on
of the measurement noises ( r(A K conditioned on v(kA ) hasthexeedot
ito be independent of ti(. - I). wt a~ ri A. i.e.. state depen- J=E(C} . (3.2)
dent process noise is allosmed). then

We assume here that the minimum and, therefore, an
-~ ~ p[I AA) " (A) , I (A) (A) optimal solution (policy) exist. Otherwise, the infimium of

(2.9) (3.2) is to be obtained and then only an (-optimal policy
exists (see. e.g.. II. p. 42)). Other approaches. like min - max1and, since and worst distribution. are also used sometimes but they'

p~xIk HP. ( A 1 p s( v p ~' (210)are usually more difficult.p[ 0k ) P. (A ( ( (210) In order for (3.2) to be a well-defined criterion, the
then inertng 2.9 an (210)int (28) t fllo~s hat expectation must exist. i.e.. all the variables entering into

the cost must be either deterministic or random (withP[ V( A -1) 1' A~ (A)] -01A I t( A)fl (2.11) suitable moment conditions that guarantee the existence of
No%. uing(2.) ad (.11 in(2.) ttlehasthe expected cost). No "unknown constants" can be used

* Nos. sing(2.) ad (211)in 2.61onehasin formulating stochastic control problems with the Baye-
~ fl - ~u'A (22) ian approach.

.[ IAJ 2.2 If there are unknoss n system parameters. the% have to be
*i.e.. Pis suimari,.ed bh . Equation (2.12) is the recur- modeled as random %ariables with a priori pdf. If these

i~on ('or tile information state. parameters are time invariant, then one has a single realiza-
I ron te smoothing properc\ of expectations it also tion from the prior pdf. i.e.. an unknoxmin s-vstem model

tollosss that, for /*-k, generated b\ a probabilistic mechanism before thle start of
the prcess,. In this case the minimization of thle e'.pected

/ I Ej4 IPJ 'I cost implies that wse \\ ant ito find the optimal polic\
I1) over all possible Initial conditions (as specified bl\f'4s( A A. PJtA p [ \(A liP1 dA(A) their pdf:
2) o\, er all possible \alues oif the unknown paramleters

A ).~' biA(\flhose realiuation is, according ito the corresponding pdf)in p[ 0 [ L, x~
thle ensemble of s.\stemis perceived bN the controller in

% ieA (of, its uncertaitts
j ~z.: 1 .)1 3 otser all posible disturbaince sequences.

Mi hre thle ss hiteness of thle process, noise sequence and its, We hr r nnu ie-n~rato lmt a\
ndepcndenkce fromn the mneasurement noises has been used Ing s".stetn paramneters the stochastic controller c~an then be

adapt ise. i e.. it \% ill ( hopefull\s "learn" the s~ stemn paraie-
I heret 'r. thle ss h1Citcs anld rti indepenldence 1ters duigtL_ .mtr.' eid

the Isso n1oise sequences is at sufficient kconldtion for ",I he11 causaIlit\ condtion01 Is that an.\ decision f unc.tion
- he an jin ormiat ion state. It should be emiphasized that the muti depend onl\ oin thle information set msailable at the

.s hi tenes', Is thle crucial assuniption. This is equws alent to time it has to be computed. i.e..
he requirement that x(A ) be an incoinpletel\ ob serv ed It A I Id A. I' A 0. I.... I V (3.3)

\1.irko ' process If. for example. thle process noise se-
qijIc is nlot Ml ite it is obs.0I ious 1 thAt doe, nlot sum- Since the principle of optimalitv states that es er\ end
mniari/e thie paist data. InI this ease the ,ector \is not a state part of the decision process must'be optimial. thie .multi-
ims mo re aind it has Ito be aucrireuited (sec. e.g.. 1311). '[his stage Optimi/ation has to, be started from the last stage.

di s-u ti-ion po inits out thle reason ss I the formulatio n of File last decision. It( \ I 1. niust be optimal \ki th regard ito
sIL 'li.istic conmutrorl problems i'donetiv t(I %%11he i1loise se- the in fornmion set as ailable %% hen it has to he computed.

* queces.i.e.. it \kill be obtained from the functional minimitation

V.- .*~ % - - -- - -- - -,-
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min E(CII - 9) (3.4) the minimization (3.7) of C(O), the cost starting from the
,,(.) 1) initial time 0 yields the discrete-time stochastic dynamic

%%here C is the cost for the entire problem. programming equation. Dynamic programming can be ap-
The next to the last decision u(pN-2 plied only to the so-called class of "decomposable" cost

I) must be optimal with respect to (w.r.t.) 1  2 and functions, as pointed out in [21]. [23]. The additive cost

2) is to be made knowing that the remaining decision (3.8) belongs to this class.

u( N- I) will be optimal w.r.t. -P"1Di 2 Since

Thus. the (functional) minimization that yields the deci-
sion function at N-2 is C= c[j.x(j)L(j)] (3.9)

n E[minE(CIl/ ')Ii ] (3.5)
Um U"(35) is independent of ,'- and using the smoothing property

of the expectation operator. i.e..
and it uses the result of the functional minimization (3.4).

Note that the outside averaging in (3.5) is over Y(N- I) E[E(.II)IA] =E[.II']  Vj>k (3.10)
using the conditional density

one has from (3.7)
p[ (N- 1)11/ . u( N-2)] (3.6) J*(O0 I°)

parameterized by the control at N-2. Since this measure-
ment is not yet available when u(N- 2) is to be computed / m E
but it will be available for u(N- 1) it is "averaged out" in uine ..- -2i [ mi . - (N)
(3.5).

The above-described last two steps are entirely similar to +- I 1 C IN
the "preposterior analysis" technique from the operations + c(j)lI -,.
research literature discussed, e.g.. in [22]. This technique is 1=0

usually formulated in the following context. The first deci-
sion [here u(N-2) is for information gathering by an minE{... min E[C -1 + min E[c(N)
experiment from which a posterior information will result u(o) . u%-2)I. u(N-1)

[here y( N- 1)] that will be used to make the last decision (
[here u(N- I)]. The prior (to the experiment) probability ]c(N- l)11' '11" .. 110

density of the (posterior) result of the experiment is called
the "preposterior density" and in the present problem this " r
is (3.6). Thus. one can say that preposterior analysis, which min Ec(0) + min E c(l) + - ( N- 2)

is "anticipation (in a statistical sense. i.e.. causal) of future (O) m (N -2)

information is a consequence of the principle of optimality. m E[c(}}-l)ic(N)I} 11 1 v-2 ... 111 110
From the above discussion it can be seen that the + in ii f•

principle of optimality's statement that. at every stage, "the
remaining decisions must constitute an optimal policy with (3.11)
regard to the current information set" implies the follow- In the above the cost sunmands have been moved to the
in-: every decision has to use the available "hard" informa- left outside the minimizations that are not relevant for
tion (2.3) and "soft" information (3.6) about the subse- them.
quent hard information. This can be paraphrased as the Rewriting (3.11) in (backward) recursive form yields the
optimal controller has to know how to use what it knows as Bellman equation

a%%well a- %hat it knows about what it shall know.
*': The extension of (3.5) to the full N-stage process yields J, k. IA) mi E{c[A. x( k ). u( )]

the optimal expected cost starting from the initial time as ',9 A)

J*(o. 1") +J*(k + 1 1 )Il} k=N-I,.-..0 (3.12)

. . ')Ilk 1/0 %,1whereJk. I ) is the optimal cost-to-go from time k to_,r ),, U) s1 the end and its dependence on the available information

(3.7) set at k is explicitly pointed out. The terminal condition for
(3.12) is

% where I" is the initial information. Note that this equation
does not assume any particular form for the cost function
C. where the last measurement is irrelevant since it is averaged

:or the additive cost given by out immediately.
V I The stochastic dynamic programming functional equa-

C(k)=c[N.x(N)]+ , (jj.x(j).u(j)] (3.8) tion (3.12) resulted from the use of the principle of opti-
• mality embodied in (3.7) for the additive cost (3.8). The

-, ..., ., . .. . .. .~~.- . ; ,. - :- - -. : -. -o' . -,*. , -,, 4%'-, - .,..h , . "., ... ,*.. ,-, . -
*, . . I. * e';# . . % ,,,'-
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. recursion was obtained by moving to the left in (3.11) the and allow an assessment of the effect of uncertainties
cost summands. (imperfect information: present and future) on the con-

An equivalent approach. based on the "basic lemma of troller and its performance.
stochastic control" [2] is as follows. This basic lemma states The approximations of the stochastic dynamic program-
that ming fall in the following two classes.

1) Feedback Type Algorithms: In this case the control
rin E[c( x. u)] = mi E E[c( ..u )lt]} depends only on the current information

Is u

Emin Ec( %.u)Ir] . (3.14) u(k)=u(kIk) (4.1)

i.e.. if a measurement v related to x is available then the but does not use the prior statistical description of the
future posterior information

minimization of the conditional expectation [the right-hand
side (RHS) of (3.14)] yields the absolute minimum. This is p[y(j+ l)III], j;,k. (4.2)
equikalent to the statement that to minimize an integral
Ithe outside expectation in (3.14)] is best done by minimiz- 2) Closed-Loop Type Algorithms: Such a controller
mg the integrand at each point via the function u(.y), i.e.. utilizes feedback (4.1) and anticipates future feedback via
"'feedback." instead of a single value for the entire integral. (4.2), i.e.. that the loop will stay closed.
i.e.. "'open loop.'- In other words, moving a minimization Feldbaum 114] introduced the concept of dual effect in
inside a sequence of expectations, to be in front of a the control of stochastic dynamic systems. In a stochastic
conditional expectation (conditioned on all the available problem the control has. in general, two effects.
information) is what is needed for the global minimum. 1) It affects the state (control action).
Thus. based upon (3.14) the expected cost is minimized as 2) It affects the uncertainty of the state (augmented by
follows: the possibly unknown parameters).

rain E CIP A rather general mathematical definition of this has beenm, . . E(C,,,given in f7] in terms of conditional central moments of the

state vector. To illustrate it. let the conditional covariance
mnn E{." E[ E( (vI' )1 ]... 1") of the state at k be

min. . min L min E(I' 1i ([1())1.[(k](, lk)]'I"}
....... 2 t" '  tJ J(4.3)

(3. 15) where i( k 1k) denotes the conditional mean. Then if X(k k)
i.e.. exactly(3.7). Note that the nestedness property (2.3) of does not depend on the past controls U' -' the control has
tile sequence /' was used above. no dual effect (of second order), i.e.. it is neutral. This is

the case in linear dynamic systems with additive but not
necessarily Gaussian noise [7], [32]. In nonlinear systems

IV. DUAl EFFi : CA:I ION AND PROBIHN the state estimation accuracy is in general control depen-
dent- the control has a dual effect.

The solution of multistage stochastic decision processes. If the system has unknown parameters, modeled as a
either in the general forn (3.7) or in the stochastic dynamic realization of a vector valued random variable, the control
programming form (3.12) for an additive cost is a formida- values will affect, in general. the information about them
hle problem. Unless an explicit form is found for the derived from the measurements. Since having more accu-
optimal cost-to-go in (3.12) one cannot solve this func- rate estimates of the system parameters is intuitively be-
tional equation except numericall. The curse of dimen- neficial for the controller, the idea that the controller
ionality [6] afflicted upon the deterministic dynamic pro- should enhance their identification is appealing. The initial

Tramming is further compounded by the expectation oper- control should account for the fact that it is applied to a
ators in the stochastic case making it unsolvable with a few system with parameters drawn from the prior distribution
exceptions (in addition to numerical minimization. numeri- and for the fact that their value can be further identified
cal calculation of the conditional expectations also has to during the process. This is the adaptive or learning feature
be carried out. which is practically impossible). of the controller. A simple example that illustrates the dual

The few exceptions are the linear-quadratic problem [I]. effect of the control is given in the Appendix.
[2]. [7]. the linear-exponential-quadratic-Gaussian problem Therefore, the controller can be used for "active infor-
1241 and a linear system with a special form cost (even mation storage" (estimation enhancement or uncertainty
powers of the state up to sixth) 125]. reduction) via what has been called probing 114]. Note that

Since one cannot obtain the optimal stochastic controller only a "closed-loop" algorithm can do this active informa-
it is of interest to find suitable approximations for the tion gathering. On the other hand, the existence of uncer-
tochastic dynamic programming. Such an approximation tainty in the system, might have another effect. Since, in

should preserve the preposterior analysis property of the general, uncertainty in the system will increase the ex-
principle of optimality mentioned in the previous section pected cost. the controller should be "cautious" not to
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increase further the effect of the existing uncertainties on The main problem is to obtain an approximate expres-
the cost. A simple example to illustrate this "caution" sion for E(J'(k , !. < ):')1 } preserving its closed-loop
effect is also given in the Appendix. feature. i.e.. this expression should incorporate the "value"

The open-loop feedback (OLF) control [I], which be- of the future observations. In order to find an explicit
longs to the feedback class, works well in some problems. solution, the cost-to-go ((k +- 1) defined in (3.8) is ex-
Nevertheless, it can suffer from the "turn-off" phenome- panded about a nominal trajectory (designated by sub-
non which can be avoided only bv a closed-loop controller script 0) generated h, the recursion

- 115]. [361. As pointed out in 17] the optimal solution of the
* linear-quadratic control problem belongs to the feedback X0( ji 1) =fi. x0(), u0(j), ()],

class because in this problem the control has no dual effect. j=k+ 1,. • 'N- 1 (5.3)
Among the algorithms that belong to the feedback class are
the heuristic certainty equivalence ("enforced separation") where uo(j). j= k + 1,.. N- I is a sequence of nominal
J 10l. 1291. the self-tuning regulator 13]. the cautious control controls and E(j) is the mean of the process noise. The
[361. and the multiple model partitioned control [4]. 1131. initial condition x.(k + 1) is taken as the predicted value of
Algorithms of the closed-loop type are the wide-sense the state at k + I given :? and the control (yet to be found)
adaptive [8]. 129]. [301. the dual controllers of [271. 1361. the u(k ). The expansion of the cost-to-go from time k + I is
innovations dual controller of [201. and the model adaptive C(k+ 1)=C,(k+ 1)+AC0 (k+ 1) (5.4)
dual controller for multiple models [371.

where C(k + 1) is the cost along the nominal (ignoring all
.- (" V. C IION AND PROBING EnECrS FROM rHE the uncertainties) and 1Co(k + I) is the variation of the cost

SIOCHASTIc DYNAMIC PROGRAMMING about the nominal with terms up to second order obtained

from a Taylor expansion. which will capture the stochasticthe previous discussion pointed out qualitatively that a effects. The approximation of the closed-loop-optimal ex-
-" controller

"I) has a direct control effect on the state pected cost-to-go from time k + I is done now as follows:

2) can perform active information gathering (probing) J*(k+ l)=C,(k + l)+AJ (k+ 1) (5.5)
to impro e the accuracy of subsequent control actions, and
3) his t, be cautious because of the existing uncer- where the optimal "closed-loop" perturbation cost is

tinties in the sstem.
Shile there is no universal agreement on the notions of

caUtion and probing this author believes these concepts are
' aluahle in the derivation of suboptimal algorithms. In this =mm F m [((kI)I~ I''
section a quantification of the above properties is pre-
sented. This is obtained bN an approximation of the opti- (5.6)

mral cost from the stochastic dynamic programming that
results in a decomposition of the cost into three terms, each and 6u(k)=u(k)-u,,(k). This minimization problem is
associated with one of the above items, quadratic since, by construction. AC0(k + 1) is quadratic in

hThe ,tochatic dynamic programming equation (3.12) is .U(1), k + I <,V - I as well as in the variations about
"ipprox1nuted as follows 18I. [21). 1301. First, instead of the the nominal trajectory. Ax( )--x(.i)--x 0 (j), k + I <_j-<N.
x. iformation state, the follow ing approximate "'wide- Using a Taylor series expansion of (2.1) and including,nc" information stale ie used" second-order terms results in a set of perturbation state

equations in Sx( j) with Sx(k+ ])-x(k+ I)- x(k+ I) as
-({( A A). !(-A ik)}. (5.1) an initial condition. Thus, the problem posed in (5.6)

consists of minimizing a quadratic cost given a quadratic
i.e.. the (approximate) conditional mean and covariance of system of state equations, and is somewhat similar to the
SA, ) obtained. e.g.. via an extended Kalman filter. The use linear-quadratic control problem. Then, by assuming a

of this "quasi-sufficient statistic" is needed for an algo- solution quadratic in the perturbed state (i.e.. neglecting
rithm that is implementable. Assume no% that the system higher order terms) and evaluating the expectations per-
is at time k and a closed-loop control (in the sense defined mits the optimal closed-loop (CL) cost-to-go to be obtained
earlier) is to be computed using ,, ' and the present knowl- explicitly. See [81 for the development of the details. This
edge (statistical) about the future observations, result. obviously, depends on the approximations used in
I he principle of optimality "ith the information state the derivation.

15 I ) yields the following stochastic d~ namic programming
'-i equation for the closed-loop-optimal expected cost-to-go at The Cost De(omposition

tinme k
The explicit expression of the (approximate) cost ob-

S . . Ec[k. x(k u( tained can be decomposed as follows:
., , 0 (5.2) J(k) J.(k)

-  
(k) J,,(k (5.7)

. ..: ..
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where the subscript D stands for deterministic. C stands The closed-loop control u(k) is found from the minimi-
. for caution, and P stands for probing components. zation of (5.7) using a search procedure. At every k to each

It will be assumed, for simplicity, that control u(k) for which (5.7) is evaluated during the search
there corresponds a predicted state and to this predicted

c~.[,x(k ). u(k )] =c1 [k. x(k )1 +-c[. u(k )] (5.8) state a sequence of deterministic controls is attached that

* and that the process noise, whose covariance is V. enters defines the nominal trajectory. The only use of the nomi-
additivelv in (2.1). Then the deterministic component of nals and perturbations is to make possible the evaluationthe cost-to-go is. excluding t (which does not dend on of the cost-to-go optimized in a closed-loop manner. Thisthe cost-to-go is. e in procedure is repeated at every time a new control is to be
the control) is given by obtained.

JD(k) =[k.Wk )] +Cok +l)4y(k+1) (5.9) The "quality" of the approximations used in the deriva-
tions outlined above, in particular. the second-order expan-

and the stochastic terms obtained via the perturbation sions. is an open question. Only extensive Monte Carlo
problem are simulations with rigorous comparison with other algo-

rithms (see, e.g., 137]) can answer these questions. For some

J, (k) 1 2tr[K0(k+ I )E(k-'- Ilk)] problems 129]. 1301 significant performance improvements
have been found. In other cases where probing is not
significant the CL algorithm performed close to the OLF

-1-1 2 . tr[K,(j -lI V(j) ]  (5.10) 181.

A-1 DThe cost decomposition is believed to provide the only
insight we now have towards the understanding of complex

S2 ristochastic control problems for which the optimal solutionJ(k 1 2 (5.11) is unknown. Furthermore, the classification of various sto-
chastic control problems presented in the next section.

is the covariance of the augmented state and y. K. and ii which is based on this decomposition, can be used as a tool
are gisen b.s appropriate recursions detailed in [8]. to assess for which nonlinear problems stochastic control

The stochastic term (5.10) reflects the effect of the algorithms can provide significant performance improve-
uncertainty at time k summarized by (klk) and subse- ments.
quent process noises on the cost. These uncertainties can-

e not he affected b, u(k ) but their weightings do depend on
ft. e.g.. "(k - 1 k ) depends on v( k JA ) and u(k). The effect VI. IMPLICATIONS OF THE COST DECOMPOSITION
of these uncontrollable uncertainties on the cost should be AND EXAMPLES

minimized bs the control; this term indicates the need for
the control to be cautious and thus is called caution term. The decomposition of jCL presented above yields an
I he stochastic term (5.11) accounts for the effect of un- explicit evaluation of the tradeoffs between direct control.
..ertainties when subsequent decisions (corrective actions) active probing, and a cautious action on the part of the
% ill be made. The weighting of these future uncertainties is controller. Thus. the ability of the control to affect learning
nonnegat 1ie ( c,I is positive semidefinite). If the control as well as steer the system to its targets can be numerically
can reduce by probing (experimentation) the future up- evaluated using this decomposition. This is a particularly
dattcd .osarianec. it can thus reduce the cost. The weight- attractive feature for it captures both the need (and desire)

ing matrix . i , ,elds approximately the calue of future of the controller to extract more information from the
:,th'riztzt:,i for the problem under consideration. There- system as well as the aversion for drastic actions which
fore. this is called the probing term. Note that even if the may result in undesirable outcomes (risk aversion 112]).
,ontriol has no dual effect, i.e., it does not affect the future Furthermore, this also gives indication whether the uncer-

co\artance " of the augmented state (which includes the tainty dominates the problem when the stochastic part of
random parameters). the weighting of these covariances the cost (Jc+Jp) exceeds significantly the deterministic
ught still be affected by the control. Therefore. this (ad- part (JD).

umttedl\ approximate) procedure accounts not only for the If the uncertainty dominates the problem, then one can
dual effect but all the stochastic effects in the performance distinguish two cases.
index. 1) The caution component J,. dominates. Then, since

Thus. starting from the stochastic d\namic programming this is "uncontrollable" uncertainty, one has a highly un-
one can see the following: the benefit of probing is weighted certain model which cannot be improved in the course of
b,, its cost and a compromise is chosen such as to minimize the control period.
the sum of the deterministic, caution, and probing terms. 2) The probing component J, dominates. Then, with the
[he minimization of j1 will also achfee a tradeoff be- dual effect of the control. one can reduce the uncertainty of
tween the present and future actions according to the the model-thus, the model, while uncertain at the begin-

L information available at the time the corresponding deci- ning. might prove to be ultimately adequate for the control
0 sions are made. problem under consideration.

V%
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A third case occurs when we have the following.

3) The deterministic component of the cost Jo
dominates: then the parameter uncertainties are of no jCL

significant consequence.
The last case is the most desirable because then the

controller can be of the certainty equivalence type [7]. i.e..
it cat. ignore the uncertainties by repiacing all the random
variables by their (conditional) means. This is the least
expensive algorithm because it is essentially deterministic
and will yield near optimum performance. However. the
stochastic control approach outlined above has to be used 16o

0to reach this conclusion.
Wonham [33] stated, about ten years ago, the following.

In the case of (stochastic) feedback controls the general
conclusion is that only marginal improvement can be ob-
tained (over a controller ignoring the stochastic features),
unless the disturbance level is ver high: in this case the '-

fractional improvement may be large but the system is CL
useless anyway. -" o.

This statement implies that with high-level disturbances
• " (in which one can include large parameter uncertainties)

one has a "hopeless" situation. The other extreme is the 5 0 51 o ,o
situation with low level disturbances. These two situations F,,ST PR ,0 CONTROL

seem to match, respectively, cases I) and 3) from above. It Fig. I. Cost decomposition for a probing-dominated stochastic control

was also pointed out in [331 that Feldhaum's dual control problem (terminal guidance for a third-order system with six unknown
which probes the system might hold the promise of useful parameters).
applications of stochastic control. However, at that time it
was not clear whether there are stch problems and. if yes. with the state prior to the terminal time and the cost
then how to obtain a (dual) controller that can effectively weighting of the control, also entering quadratically, was
probe the system to reduce uncertainties. The wide-sense low.
dual (or stochastic closed-loop) control algorithm 18], [291, Fig. I presents the plot of the cost decomposition for the
presented in Section V. can then be used to obtain signifi- first period control. It can be seen that this is a probing-
cant performance improvement, dominated stochastic control problem: the probing compo-

As will be shown in the sequel. the cost decomposition nent of the cost is approximately 80 percent of the total
presented above can answer affirmatively the question cost.
whether there are probing-dominated stochastic control The performance of the wide-sense dual (or closed-loop
problems. i.e.. problems falling in case 2) from above. (CL)] control described in Section V was compared in 130]

In the following a number of examples are discussed to via Monte Carlo runs to the HCE (heuristic certainty
illustrate the usefulness of the cost decomposition and its equivalence) where the parameters' estimates were used as
implications. Some of these examples have appeared earlier if they were the true values. The observed improvement of
in the literature and they are reexamined in light of the the CL algorithm versus HCE was, from (the modest
recently gained quantitative understanding of the caution number of) 20 Monte Carlo runs, around 85 percent [30].
and probing effects from the cost decomposition. This fractional improvement is quite close to the share of

the probing cost from the total as indicated above. The CL
.I. A Probing-Dominated Problem (Terminal Guidance) controller, via its dual effect helped identify the system.

i.e.. it was actively adaptive and this was the key factor in
The first example is the interception problem from 130]. its better performance. This decomposition, which was not

In this case a third-order linear system with six unknown known at the time of the original work (301, can now be
(random) parameters and both process and measurement used to provide the explanation for the observed perfor-
noises was considered. The augmented nine-dimensional mance improvement.
.tate (for which the dynamic equation is obviously nonlin- An important observation is that the probing component
ear) had an initial estimate and an associated covariance. of the cost is not convex -the parameter identification is
The elements of this covariance matrix corresponding to enhanced by large magnitude first period control values,
the parameters reflected the fact the initial estimates of the both negative and positive. This lack of convexity of the
parameters were poor. The goal was to steer one of the probing component leads to local minima, as can be seem
(proper) state components to a target value by the terminal from Fig. I. This phenomenon was pointed out in [27],
time. %hich was N= 20. This was expressed by a quadratic [36]. The behavior of the multiple minima is discussed later
term for the terminal state. There was no cost associated in more detail.

" , -. %- • ..- , .. . ....-. • • ... -. . -.......-...- ,.-....,......-,.•...-..-......-.,..-............'..-.'..',.'.......-..-
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The example discussed above, which is of the terminal Or ...- --

,tate penalty type. belongs to the second class of problems,

i.e.. probing dominated. . c,

B. .4 Caution-Dominated and an Essennally Determnnst"J
Problem (Econometric Models)

Two additional problems, derived from econometrics are
discussed next. Both are macroeconometric models of the
U.S.. derived from the same data but under different
;issulptions. For a concise description of the models see

1). J0]. Ihe first econometric model has three states (gross
national product, investment, and consumption), is driven
by the government expenditures input, and has five un-
known parameters characterized by an initial estimate and O°_
covariance matrix. The second econometric model has I1
states (as ahove plus increments of these variables and
some lagged values), same input, and three unknown
parameters. JP

The first model was obtained by Kendrick using ordinary
least squares [ 171 while the second, more elaborate model. L0
%as obtained bv Wall using the full information maximum o ,RS "0

likelihood method 1341, [351. The cost was quadratic in the FIRST PERIO CONTROL

deviations of the three economic variables and the input Fig. 2. Cost decomposition for a caution-dominated stochastic control
problem (third-order econometric model with five unknown parame-

from target %alues along the entire trajectory consisting of ters).
,even periods (economic quarters). ,04-

The analssis of the cost J( '(0) for the first econometric I

model, shown in Fig. 2. points to the fact that this problem
is dominated b\ the caution term. This is due to the
relati~el, large uncertainties in the initial parameter esti-
niatcs. The probing component is negligible - this problem
is completely dominated by the initial uncertainty -- it be-
longs to the first class defined at the beginning of the 0-

,ection. Note that both the caution as well as the probing
term tend to reduce the value of u' I versus u (E, i.e., they
ire not conflicting in this case.

Fig. 3 sho\%s the cost for the second econometric model. J,
I he deterministic component dominates here and u' (0) is J
%er, close to 1 u i "(0). The probing component is again
negligible. This problem belongs to the third class-- it is

essentially deterministic.

J,A .talar Problem: Parametric Study of the Cost Shape

Another esample of the application of the cost de-
*coniposition deals with a scalar linear system o~er N=2 0
timte periods discussed in 1191. '0 0 -50- 70

FIRST PERM CONTROL
k(A I ) -a. (k) hu( k ) + t(A ) k 0. 1 (6.1) Fig 3 Cost decomposition for an essntially deterministic sItochastic

control problem (I Ith-order econometnc model with three unknown
,,\ith a 0.7 known. the unknown :nput gain h %ith initial parameters)
estimate h(0) r 0.6, and variance o(0). The process noise Fig. 4 presents the cost decomposition at k=0 (first
tI k) is zero mean, white with variance V. The goal is to period) for the initial gain uncertainty o2(0)=0.52 and
keep the state x. which is perfectly observed, around zero. process noise variance V=0.2 and terminal state weighting
'I his is expressed by the quadratic cost Q(2) = 10. The probing component of the cost. which varies

(drastically with the control, yields two minima for the total
C I 2Q(2)x-(2) +/2r[u2(0)-u

2 ( )] (6.2) cost. It is of interest to see how these minima behave as the
terminal state weighting changes. This is illustrated in Fig.

,..ith terminal state weighting Q(2) and control %,eighting 5. For even larger terminal weighting the two minima get
r -0.1. The initial state is x(O) 1. further apart while for a lower weighting, Q(2)= i. there is

......
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Fig 4 Cost decomposition for a two-stage problem with unknown Fig. 6 Effect of the anticipated future learning on the control (scalar
input gain (scalar system) system)

- and various values of I. For large process noise variance.

less learning is anticipated and the cost curve is relatively
flat, even though it has two minima, wide apart. For low
process noise variance the cost curve has a very high
maximum at u()=O (when no learning of b occurs) and

_ then two sharp minima around this point.

.0 VII. CONCLUSIONS

While still very few stochastic control problems have
been solved optimally, insight into such problems can be
gained by using the decomposition of the expected cost.
This decomposition, based on the stochastic dynamic pro-
gramming. yields three cost components: one deterministic
and two stochastic ones. The stochastic terms quantify the
effect of the various uncertainties on the performance
index. The effects these stochastic terms have been associ-
ated with Feldbaum's concepts of caution and probing.

Furthermore, this decomposition revealed three classes of
" -- ,stochastic control problems: caution dominated, probing

dominated, and essential deterministic. This, admittedlh
SI a The closcd-'p ct for arios terminal tate cightng' (scalar fuzzv, classification pointed out that there are stochastic

system)
control problems where significant improvements can be

only one minimum left. In this latter case the lighter expected when using an appropriate sophisticated control
. terminal penalty does not justify a major control effort to algorithm. The examples show that one can assess, before
- identify accurately the parameter h and u(L is quite close extensive simulations. whether significant performance im-

to u i -E. provement can be expected in a stochastic control problem.
.Another aspect of interest is how the anticipated future It has also been shown that the various cost components

lea-rng changes the present behavior of the ('L controller, can vary drastically with changes in the performance index
To this purpose the variance of the process noise was Veightings. The probing component of the cost can be
saried. Fig. 6 shows the cost J '(0) for Q(2) I(X). nY2 - 2, nonconsrex thus leading to local minima in the total cost.

,,,
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STOCHASTIC CONTROL AND IDENTIFICATION ENHANCEMENT FOR THE FLUTTER SLPPRESSION

PROBLEM

Y. Bar-Shalom and J. Nolusis

Electrical Engineering and Computer Science Department, University of

Connecticut, Storrs, Connecticut 06268, USA

Abstract. The topic of this paper is the application of some recent results
in stochastic control to an aerospace problem where there are large

uncertainties in the dynamics of the plant to be controlled. An approxima-
tion to the stochastic Dynamic Programming is considered that results in an
adaptive control of the "closed-loop" type: it utilizes feedback (latest
state and parameter estimates and their uncertainties) as well as their

anticipated future uncertainties - it anticipates (subject to causality)
subsequent feedback. This algorithm has the feature that allows the control
to enhance the parameter identification in real time. This is done using

the control's dual effect: the control can affect the state as well as the

(augmented) state uncertainty and thus can reduce the uncertainty about some
parameters. A flight control application in which stochastic adaptive

control appears to offer significant payoff is the active control of air-

craft wing-store flutter. Improved flutter suppression can be accomplished

with an adaptive controller that has the capability to learn and identify

the flutter modes during the flight.

1. INTRODUCTION control has the same gain as the corres-
ponding deterministic problem and only uses

The topic of this paper is the application of the state estimate instead of the (unavail-

some recent results in stochastic control to an able) state. This solution exhibits only
feature W'4 from above - it is independent

aerospace problem where there are large uncer-
tainties in the dynamics of the plant to be of the quality of the state estimate. The
controlled. While the stochastic Dynamic "Heuristic Certainty Equivalence" (HCE)
.Programming [Bl,B2] yields, in principle, the algorithm for linear systems with unknown

solution to general stochastic control problems, parameters consists of the following: the

the curse o f dimensionality prevents its appli-' parameters are estimated in real time and
cation to nonlinear problems. An important the feedback gain is computed using the
claio tobm linear problems. latest parameter estimates as if they were
class of problems is the one of linear systems tetu aus[l.

with unknown and possibly time varying para- the true values [Sll.*

meters. Such a system is nonlinear in the

augmented state, which is made up of the This algorithm, while adaptive, does not

proper state and the unknown parameters. take into consideration the quality of the
parameter estimates.

it was pointed out in [B3] that the optimal
stochastic control depends, in general, on An approximation to the stochastic Dynamic
sProgramming was presented in [Tl,T2,B4].

(0 the current information (e.g., the In the terminology of [B3], the resultinR

latest estimate of the state and adaptive control is of the "closed-loop"(CL)

parameters) type: it utilizes feedback (latest state
and parameter estimates and their uncer-

(ct) the quality of the current informa- tainties) as well as their anticipated
tion (represented, e.g., by the future uncertainties - it anticipates (sub-

covariance associated with the ject to causality) subsequent feedback.

above mentioned estimates) This algorithm has all three features (')-

"() the anticipated quality of the sub- (L') mentioned above. tn particular, the

sequent (future) information third feature allows the control to enhance
the parameter identification in real time.
This is done using the control's dualth

The well-known optimal solution of the Linear This i the control's al

"luadratic Gaussian Problem (without unknown effect [FI: the control can affect the

parameters) has the so-called Certainty The strict neaning of Certainty Equivalence
Equivalence property: the resulting feedback is that all the random variables in the

problem under consideration can be replaced
by their means-the problem is equivalent to

Research supported by AFOSR Grant 80-0098 one with perfect certainty.
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state as well as the (augmented) state all the random variables are replaced by
uncertainty and thus can reduce the uncer- their means). This algorithm is suboptimal
tainty about some parameters. This is the in the sense that certain approximations are
"probing" or "estimation/identification used in expressing the optimal return func-
enhancement" property of the control. For tion in the solution of the dynamic program-
this reason the algorithm was also called ming equation. In particular, Taylor's
"dual control." At the same time the con- series expansions about some nominal trajec-
trol also has to exercise "caution" in tory, including second order terms, are used.
order to avoid the performance to suffer The convenient and intuitively appealing form
due to the existing uncertainties, of the solution, together with its computa-

tional tractability, however, make it a very
The connection between the stochastic useful tool. Only a brief outline of the
Dynamic Programming and these two properties algorithm is given to facilitate under-
of "probing" and "caution" of an adaptive standing of the stochastic cost decom-
controller is discussed in Section 2. position (see [B41 for details).

A flight control application in which Consider the system whose state x(k), an n-
stochastic adaptive control appears to vector, (which has been augmented to include
offer significant payoff is the active con- unknown parameters) evolves according to the
trol of aircraft wing-store flutter. Fighter equation
aircraft are required to carry many different
combinations of external wing-mounted stores x(k+l) = f[k,x(k), u(k)] + v(k) (2.1)
to perform a variety of missions over a wide

operational envelope. Wing mounting of these
stores gives rise to different flutter and whose observations are given by y(k), an
speeds. Release of the wing-mounted stores i-vector, according to
will cause an abrupt change in the damping
and frequencies of wing structural modes.
The structural and aerodynamic models used z(k) = hkx(k)J + w(k), k = ,.,-1
in the design of "constant gain" type con- (2.2)

trollers are increasingly inaccurate for
higher frequency aero-elastic dynamics. The initial condition, x(0), is a random vari-
Thus, improved flutter suppression could be able with mean i(0/0) and covariance E(0/0);
accomplished with an adaptive controller, v(k) and w(k) are the process and measurement
which includes the capability to learn and noises, with known statistics up to second
identify the flutter modes during the flight order. The cost function is taken as
mission. N-1

The ability to successfully suppress flutter C(N) - ,[x(N)J +3 L[x(k),k] + 0[u(k),kJ
during a change in store configuration re- E
quires that the adaptive controller identify k-O (2.3)

the structural modes very rapidly. Failure The optimal closed-loop expected cost-to-go
to identify the system parameters quickly can be written as fB4]
enough could result in an instability or
cause structural damage. For this reason, JCL(N-k) JD(N-k) + Jc(N-k) + J(N-k)
an adaptive control which provides identi- D C P
fication enhancement through probing would (2.4)
result in more rapid identification of where
system parameters than a heuristic cer-
tainty equivalence controller. JD(N-k) A[H(k),k] + Co(NkI-k) + yo(k+l)

Section 3 describes the flutter model (2.5)
considered and simulation results are
presented in Section 4. It is shown that is the deterministic part of the cost and
the CL control, by anticipating the
learning of the parameter can enhance their
identification; i.e., be "actively adaptive." Jc(N

-
k) = tr[(k+l) Z(k+l~k)] +

The HCE control is adaptive, but only
passively so, and its "accidental learning" N-I
is not as fast as the CI. controller's. + 'I tr (j+I)V(j)]

2. PRBING AND CAtION IN ADAPTIVE CONTROL j=k+l (2.6)

The actively adaptive control approach devel- N-1
oped earlier in [TI,T2,B4] is described in J (N-k) trr ( (j) : Dm
this section and a decomposition of the ' E_ ,xx 0
stochastic cost is presented that will Indi- jik+l (2.7)
cate the effect of the uncertainties on the
control -- whetter it should he more aggres- are the stochastic terms in the cost obtained
sive or more cautious in comparison with the via the perturbation problem. In the above,

heuristic certainty equivalence (HCE - when V is the process noise covariance, S is the
covariance of the augmented state and N, K

............................... .*.
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and A are given by appropriate recursions parameter uncertainties are of no significant

detailed in (341. consequence. This is the most desirable sit-

uation because then we can use CE, i.e.,

The first stochastic term, (2.6), reflects least expensive, control algorithm with good

the effect of the uncertainty at time k and performance. However, only the stochastic

subsequent process noises on the cost. control approach can indicate this.
These uncertainties cannot be affected by

R(k) but their weightings do depend on it. 3. A SI-PLIFIED WING-STORE FLUTTER MODEL

The effect of these uncontrollable uncer- A equation. T t e

tainties on the cost should be minimized by A simplified version of a wing store flutter

the control; this term indicates the need
for the control to be cautious and thus is model can be represented by a second orderfortheconrolto e cutius nd husis differential equation. The state space model,

called caution term. The second stochastic with position and velocity components, can be

term, (2.7), accounts for the effect of

uncertainties when subsequent decisions 
l

(corrective actions) will be made. The 0 -0 ] u v (3.1)

weighting of these future uncertainties is -- W 2 -

non-negative (.4 xx is positive semidefi- 0 0

nite). If the control can reduce by

probing (experimentation) the future up- with measurements of velocity only

dated covariances, it can thus reduce the

cost. The weighting matrix AO xx yields y = (0 1] x + w (3.z)

approximately the value of future informa-
w" tion for the problem under consideration.

thorfor thispisbcalleddthecprobinrateom, where v and w are the process and measurement.Therefore this is called the probing term.no s , e p c i lv

Note that even if the control has no dual noises, respectively.

effect, i.e., it does not affect the

future covariance Z of the augmented state Typical values of the parameters for model

(which includes the random parameters), the (3.1) are w0 = 20 + 10, - 0.05 + 0.1 (it can

weighting of these covariances is still become open-loop unstable) and < - 1 + 0.9

affected by the control. Therefore this (the control gain can become very lowi.

procedure accounts not only for the dual

effect but all the stochastic effects in A more general flutter model would include a

the performance index, lead-lag transfer function between control
input and input u of model (3.1). However,

The benefit of probing is weighted by its the simplified model (3.1) is sufficient to

cost and a compromise is chosen such as to demonstrate the adaptive control concept of

minimize the sum of the deterministic, improved control by identification enhance-

caution and probing terms. The minimization ment.

of JCL will also achieve a tradeoff between
the present and future actions according to The discretized version of (3.1) is, for

the information available at the time the sufficiently high sampling rate (typically

corresponding decisions are made. ten times its natural frequency)

To find the closed-loop control u(k), the IT

minimization of (2.4) is performed using a x(k+l) 2 T (k)

search procedure. At every k to each control [-3 0 2.. 02TJ
u(k) for which (2.4) is evaluated during the
search there corresponds a predicted state and

to this predicted state a sequence of deter- -Fv (k)1
ministic controls is attached that defines the + u(k) + (3.3)

nomina] trajectory. The only use of the nomi- LAT 1v 2(k)J
als and perturbations is to make possible the 

2

evaluation of the cost-to-go optimized in a where v(k) is a zero-mean white noise sequence.
closed-loop manner. This procedure is re-

peated at every time a new control is to be For wo - 20 one has f - 20/27 z 3.2, T z 0.3 and

obtained. the sampling time was chosen as uT - 0.03. The
nominal parameters of the discrete time model

If the uncertainty dominates the problem then are then
one can distinguish two cases: (1) The cau-
tion component, .JC, dominates. Then, since O = -w)7'T - -12
this Is "uncontrollable" uncertainty, one has 1 0

a highly uncertain model which cannot he 0 - 1-2. T - 0.94 (3.4)

improved in the course of the control period. 2 0

(2) The probing component, J dominates. O <AT = 0.03
* Then, with the dual effect of'the control one 3

can reduce the uncertainty of the model - thus The augmented state model consists of (3.3) and

the model, while uncertain at the beginning, the model for the parameters with additive zero-

might prove to be ultimately adequate for the mean White noise

control problem under consideration. A third

case occurs when (3). 'he deterministic compo- 9i(k+l) = ).(k) + v (k) i-l,2,3 (3.5)

nent of the cost, 1,,, dominates: then the 1 1+2
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i.e. the parameters were assumed to behave (over control value uHCE (0) and at the value ob-

the relatively short horizon of the problem) as tained by minimizing (2.4), uCL (0). In
Wiener processes. This was done to allow for cases 1 and 2, with moderate uncertainties
the changes that occur in the flutter dynamics in 02 (damping) and 03 (input gain) the
during the flight, three cost components - deterministic, prob-

ing and caution - are of approximately the

The initial estimate for the augmented state was same magnitude. The minimum of the closed-
loop cost is very close to the HCE control,

R(010) = [0 10 -12 .94 0.031' (3.6) which minimizes only the deterministic cost
(because HCE ignores all uncertainties).

with the covariance matrix assumed diagonal For larger uncertainties in the damping the
caution component increases but the reduc-

(00) = diag[10 1 36tion in the probin component, with a larger

2 3magnitude control uCLI>'uHCEI, yields a
small reduction of the total cost. Case 5

The last two terms, reflecting the damping considers the situation where the gain uncer-

and input gain uncertaintiy, can take a tainty is very large. This situation leads

number of values. to a significant dominance of the caution
effect - the magnitude of the CL control is

The process noise covariance was significantly smaller than the HCE control.

V = diag [0, 102 O V44  V5 (3.8) The significance of the results presented in
55 Table 4.1 for the flutter problem (assuming a

time-invariant parameter description) is as
The terms V44 and V55 were non-zero in the follows. For large uncertainty in the damping
runs where the effects of time-varying parameter (92) the performance of both the
damping and control gain, respectively, were uCL and the uHCE controller is nearly the same.
investigated. However, if in addition, the control gain has

large uncertainty (case 5) the CL control
The flutter control problem can be repre- shows a 7% reduction in the cost - all of
sented as the minimization of a quadratic which is due to the caution component. This
cost criterion implies that uncertain knowledge of the con-

trol gain dictates that the optimal control
N2 should exhibit more caution than the

J i E x'(k)Q(k)x(k) + ru2(k-l) (3.9) Heuristic Certainty Equivalence controller.

ki The second set of simulations was performed for

with a time-varying description of the flutter para-
[.001 0 1 meters. A time-varying parameter case was

Q(k) = ; r1 (3.10) simulated by assuming there is process noise in,

L[0 .1 (3.5) for i-3. The standard deviation of the
noise affecting the input gain was taken as

where, N is chosen to reflect the desired -- 0.014. The results are shown in Table

sample duration during the store configura- 4.2 for different values of the initial damping

tion change. For the problem here N=5 was uncertainty. As can be seen probing dominates:

chosen. As indicated by (3.10) the goal is a significant reduction in the probing cost
to keep the velocity, x2 , small with limited and a 10% reduction in the total cost can be

obtained by using an actively adaptive control
amounts of control, like uCL. This control anticipates that

4. SIMULATION REUSLTS changes will occur in the parameter even though

it does not know what will be the changes,

The flutter model of (3.3) and (3.4) was which are modelled by zero-mean noise withinvestigated with nominal parameter values variance V55 , according to (3.5). Conse-
shown in (3.6), (3.7) and (3.8). Two con- quently, this "anticipation" (which is re-trollers were evalu.ated: (1) the closed stricted to be causal) leads the control to
tholer ltere paatesd () the Hloersidlreloop control u

C
L which minimizes the quad- enhance the identification of the input gain,

ratic cost (3.9) and assumes uncertainty in whose variance otherwise would be excessively
the flutter parameters and (2) the Heuristic large.

Certainty Equivalence control uH
CE 

which
assumes the flutter parameters are known The results in Table 4.2 demonstrate that
without error. lhe case of time-invariant flutter suppression can be more effectively
parameters is shown first, followed by achieved bv probing the svstem to enhance
assuming the' parameters vary with time identification of the control gain for the
(Wiener Process) as shown in (3.5). case where the control gain can vary with time.

The results of Table 4.2 indicate the average
rhe first set of simulations consisted of performance improvements by using the CL.-
the evaluation of the first period cost controller. Specific time history results
decomposition presented in the previous can give a detailed examination of the identi-
section for time-invariant parameters. fication enhancement property of the CL-
Table 4.1 present, the results in control.
terms of the cost components evaluated
at the Heuristic Certainty Equivalence
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The next set of simulations consists of time the control solution. A more detailed
history runs with time-varying parameter as flutter model and further simulation is re-
in case 7. The true value for the gain was quired to fully quantify the maximum
03-0.03. The process noise v5 (l) simulated achievable performance capability using the
the change of 03 from time I to time 2. The CL control.
goal was to see how the probing control as
shown in case 7 (Table 4.2) was able to REFERENCES
enhance the real-time parameter identifica-
tion in order to reduce the cost. An exact
assessment of the potential benefits from [BI] R. Bellman, Dynamic Progranin
using uCL vs. uH

C
E would involve many Monte Princeton University Press, 1937.

Carlo runs where all the random variables [B21 R. Bellman, Adaptive Control Processes:
(initial conditions, parameters, noises) have A Guided Tour, Princeton NJ: Princeton
to be generated according to their statisti- University Press, 1961.
cal characterizations [B5] and the results [B3] Y. Bar-Shalom and E. Tse, "Dual Effect,
require special analysis [Wi1]. A few runs Certainty Equivalence, and Separztion
cnly were carried out with only the noise in Stochastic Control", IEEE Transac-
v5 (I)- 3 (2)-' 3 (l) being non-zero while, all tions on Automatic Control, AC-19,
the other noises were set to zero, to eval- pp. 494-500, October 19t4.
uate the cumulated cost over N-5 steps. [B41 Y. Bar-Shalom and E. Tse, "Concepts and
Table 4.3 shows these values for the two Methods in Stochastic Control", in
control policies for a few parameter changes. C. T. Leondes (Ed.) Control and Dynamic
In cases 8-10 the initial estimate of the Systems: Advances in Theory and
input ain was the same as the true value, Application, Vol. 12, Academic Press,
i.e., )3(0) -03(0) - 0.03. In this situa- 1976.
tion, which initially favors the HCE con- [B5] Y. Bar-Shalom, "Stochastic Dynamic
troller, the CL controller is still better Programming, Caution and Probing,"
when the gain decreases (cases 9 and 10). Proc. Joint Automatic Control Conf.,
Note that this decrease of the control gain San Francisco, CA, Aug. 1980.
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[TI] E. Tse, Y. Bar-Shalom and L. Meier,
"Wide-sense Adaptive Dual Control of

'The final set of simulations represent time Stochastic Nonlinear Systems," IEEE
histories where both the damping parameter Trans. Automatic Control, Vol. AC-I8,
12 and the control gain -3 experience abrupt pp. 98-108, April 1973.
changes. This would be typical of a wing [T21 E. Tse and Y. Bar-Shalom, "An Actively
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The cumulated cost for this case is shown in
Table 4.4 for uCL and uHCE.

The CL control is seen to have improved the
performance over the lICE controller. This
improved performance is due to identifica-
tion enhancement of the damping parameter.
This can be seen in Figure 4.2 where the CL
control is shown to identify the damping para-
meter more rapidly. Figure 4.3 shows the
identified gain parameter which is success-
fully identified by both controllers after 5
time steps.

5. CONCIL'S ION

iThe simulation results rtsented in this
paper indicate that potttlial improvement
in flutter suppression is possible using
an adaptive control of the closed loop type.
This improvement is a direct result of
identification enhancement due to probing in
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A LINEAR FEEDBACK DUAL CONTROLLER "
*. . FOR A CLASS OF STOOASTIC SYSTEM

- ".. - Y. Bar-Shalom, P. Mookerjee and J. A. Holua

University of Connecticut

Department of Electrical Engineering
and Computer Science

Storrs, CT, USA 06268

Risum6.

On prdsente une m~thode pour Ia construction d'un algorithme de commande
duale ayant une structure A rftroaction lingaire. L'application de cet
algorithme pour la commande d'un h~licoptire est discutge et des r~sultats
de simulation sont donnfs.

Abstract

The methodology for deriving a dual control algorithm that has a linear
feedback form is presented. This control, while simple, has the capability
of enhancing the identification of the system's unknown parameters. A dual
controller for a plant describing the helicopter higher harmonic vibration
control problem is presented together with simulation results.

1. Introduction

In the control of nonlinear stochastic systems the control has, in

general, a dual effect (Fl, B1I: it affects the system's state as well iis

its uncertainty. Since in linear plants with unknown parameters the von-

trol has a dual effect, it can be potentially used to enhance the real-tim'

identification of the system parameters.

The attractiveness of a linear controller that incorporates the dual

effect has been pointed out in [Ml]. Previous dual conLrol algorithns

[A2, B2, Wl, W2] required numerical search which makes their implementation

costly. The success of the self-tuning regulator [All, which stems from

its ease of implementation as well as its effectiveness, prompted us to

investigate control algorithms that have a linear feedback form but incor-

porate the dual effect.

The problem considered in Section 2 is the simplest one where there

is a dual effect, in order to illustrate the concept. A 2-stage optimi-

zation problem is then formulated with the stochastic dynamic programminv

in Section 3 and the controller is derived in Section 4.

In Section 5 an algorithm based on this methodology is derived f,,r

a multiple-input multiple-output model corresponding to a simplifi,,d

version of the "higher harmonic control" of helicopter vibration [Wi, M.

Simulation results are presented in Section 6.
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K;~- .2. Problent Formulation

The following memoryless unknown-gain system with plant and measur,

- - ~ '~ >~2 e:C noises is considered. The plant equation is 1

te(k) .- 0 ; Ev(k)v(j) =V 6I( (2.2)

and the measuftbent is given by

y(k) =x(k) + w(k)(2

where

Ew(k) -0 ; Ew(k)w(i) W 6 (2.

* and

Ev(k)w(j) =0 (2.

~ ~ The estimation of the unknown gain b (assumed time invariant here) is

done according to the following equations:
1 2 -lIb(k+l) = b(k) + P(k)u(k) [P(k)u (k) + V + W] ty(k+l) - b(k)u(k)] (2.6ii

-P(k+l) - Elb - b(k+l)]2 -P(k)(V + W) [P(k)u 2 (k) + V + W_(2,7)

Note in (2.7) the fact the control affects the variance of the liri-

meter estimate, i.e., it has the dual effect [Fl., BlJ.

The control criterion to be minimized will be taken as the expect

value of the cost from step 0 to N

J(O) - E{C(O)} (.~

where
N

c(k) - 1: cIJ'X(j),u(j)]
J-k

and. with &(j) denoting the desired state at time

C(J) - q(j)[x(j) - V )2+ ru2 (j) 0 . - 21)

c(N) - q(N)[x(N) - F(N)1
2  (.I

3. The Multistage Problem and Dynamic Progranmming

The general equation of the Stochastic Dynamic Programmini 1

S* (kYk) min E[c(k) + J*(k+l ,Y k+l )jYk k N-(.

u(k)

where J *(k) is the "cost-to-go" from k to N. Y is the i-rnII I .ItI ill,

at time k when the control ci(k) is to he determined.

Due to the memoryless nature of the system (2. 1) te oi v

between the stages in a multistage problem is the informational ti..' t

the control - its effect on the quality of the estimate of thCJ 11 *-~ t. r

The last control is obtained from

* . . . .1*~~ (N-i) in f 1 Efq(N 1) jx(N 1) (N )]2A N-1)+ 1()I\()(Ni

-~~~~~~ ?N-1).* *~~=**V -- f
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m !1n {E[q(N-1) x(N-l)-(N-l) 121 Y--+[r+q(N)[b2 (N-l)'^ +u(N-1)

2 2+ P(N-1)]]u (N-l)-2q(N)t(N)b(N-l)u(N-l)+q(N)[V+ (N)l (3.2)

as
* ~2u (N-i) = {r+q(N)[b (N-I)+P(N-l)]1} q(N)&(N)b(N-l) (3.3)

This yields the optimal cost-to-go
* 2 N-i1J (N-I) - E[q(N-l) (x(N-l) - &(N-1)) 2Y N ] + J*(N-I) (3.4)

where
A2-1 )2+ C2-i 2

- [r+q(N)(b 2(N-l)+P(N-l))]-l. (r+q(N)P(N-l))q(N)& (N)+q(N)V (3.5)

is the cost-to-go excluding the term which is not affected by the current

control.

The control (3.3) is the well-known "one step ahead cautious" control.

This is the optimal control, for all k, if the cost has a sliding horizon

of only one step (called also "myopic" control).

The next to the last control is to be obtained from the following
* -2Y -2 *i N-1 N-2 (.6J (N-2,Y N ) = mn E{c(N-2)+J (N-Y - )jy (3.)

u(N-2)

The dependence of J (N-l), given by (3.4), on y(N-l) is via b(N-l).

Since, as detailed in (3.5), J (N-l) is a rational function of b(N-l) one

cannot carry out explicitly the expectation in (3.6). which is over y(N-l)
* 1N-2conditioned on Y . Even if one could carry out explicitly this expecta-

tion, the dependence of the cost-to-go J (N-1) on the previous control

u(N-2) via P(N-I) poses a significant problem: the minimization of (3.6)

would require solving a high order algebraic equation. This can be sen

" .as follows.

Assume that b(N-l)in J(N-1) given by (3.4), (3.5) would be replayed

by b(N-2), the estimate at the time u(N-2) is to be computed. This rernves
* N-2

the need to carry out the expectation of J (N-1) conditioned on Y in

(3.6). Then (3.6) becomes an explicit function of u(N-2) and, as shown in

Sternby [S1], the derivative w.r.t. u(N-
2

) leads to a fifth order polyn'rmi.il.

Thus the two main problems in performing the first backward iterati,,n

' . ' of the Stochastic Dynamic Programming as given in (3.6) are the conditional

0 .expectation over the future measurement and the minimization. In the

1 p 01,,1MLinear-Quadratic Problem the presence of quadratic and linear terms (as

' opposed to rational functions here) made possible an easy solution for th,

optimal control. The resulting solution, in the form of a linear fecdbak

, control has been in wide usage because of its ease of implementation. On

a1%
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k*~* the other hand, the linear problem with unknown parameters is encountered

'14 M i in many applications and it is desirable to obtain (and evaluate) a dual
* controller which has the linear feedback form. The gain should in this

case depend on the current as well as the expected future parameter un-

certainties.

4. A Linear Feedback Dual Controller with a Two-Step Horizon

The coat-to-go given in (3.5) depends on the following variables:

J(N-1) - .1(-i b(-) P(N-i)] (4.1)

The first, b2 (N-1), the estimate squared of the parameter at N-1, will have

to be "averaged out" conditioned on Y N-. The second, P(N-l) depends dir-
ectly on u(N-2), which is to be determined from (3.6).

The following first order series expansion of (4.1) is proposed

-* -*IN1 (N2,P)N )"2 a(N-1) [b 2 (N-) -b(N-2)]

+ 3*(N-1) DP (N-l1) 2 - -2+-[u (N-2) -u (N-2)] (4.2)

In other words, the expansion Is about the current estimate of the

parameter, b(N-2), and a "nominal" variance for this parameter P(N-l),

given by

P(-1 P( N-2 (VW P(N-2)u 2(N-2) + V + WI-1(43

where ;(N-2) is a "nominal" control at N-2.

The following notations are introduced

J(-l 3[N -1, b(N-2), F(N-l)] (4.4)

(N-1)) (4.5)b ab 2 (N-1)

(N1) Pj(N-1)(46

P P(N-)

(N1 3P(N-1) (4.7)

values as (4.4). Note that (4.5)and (4.6) are the sensitivities of the

% *- the sensitivity of the parameter uncertainty w~r.t. the control. Wtth

4 , .these notations (4.2) can be written

77,7._P
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~ :'~ ~~'J (N-i1) =J(N-1) + J (N-1) [b (N-i) -b(N-2) 1+j (N-l)P(N )

Ju u.(N-2) - -2 (N-2)] (4.8)

The asterisk on the cost, symbolizing optimality, has been kept even

though (4.8) is only an approximation to the optimum.

When inserting (4.8) into (3.6) its expected value conditioned on

Y N2will have to be computed. Note that only the second term on the r.h.s.
N-2of (4.8) is random when conditioned on Y .Its conditional expectat inn is

^b (Ni 2 2 N-2
E Jb(N b ( N-1) - b (N-2))IYI

- '2 N-2 2
b b(N-1) E {b (N-i) IY I-b(N-2)]

J b(N-1) IP(N-2) - P(N-l)] (4.9)

4 v Notice the fact that u(N-2) enters into (4.9) via P(N-l). A first

order expansion of P(N-l) about its nominal value (4.3) will be used in

(4.9). Using notation (4.7) one replaces (4.9) by

-2 N2 -

zJb (N-1) - [P(N-2) - P(N-l) - Pu(N-l) . fu 2(N-2)-u 2(N-2)] (4.10)

The (approximate) conditional mean of (4.8), becomes, using (4.10)

N-2 (N1 - P(-E {J (N-1) IY I J(N-i) + J b(N).f(-)-~N1

+ (J (N-1) - Jb (N-1)) P u(N-1) - fu (N-2) - u (N-2)] (.1

* .* .~ ~- * :..Combining (4.11) and (3.4) into (3.6) yields
k 2 2

J (N-2) min {E~q(N-2)(x(N-l) - C(N-M) + ru (N-2) + q(N-l)(x(N-1)-
u(N-2)

& (N-1)) 2 1 yN 2 ] + i(N-l) + 3, (N-lH[P(N-2) - P(N-1)J +

+ jj P(N-1) - b (N-1)) Fu(N-1)[u (N-2) - u (N-2)1) (4.12)

Ignoring the terms in (4.12) that are independent of u(N-2) yields

u (N-2) - arg min {q(N-l)E((x(N-1) & (N-1)) 2 YN-

+ [r + (J (N-1) - Jb(N-1))Pu(N-1)] u2 (N-2)1

-arg min {(r+q(N-l)[b (N2+(-)+J(-I- N1]uNll (N-2)

-2q(N-l)$N-1)b(N-2)u(N-2)} (4. 13)

which gives the control as
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u-. , ' . ,' . *-2) tr + q(N-1)(b2(N-2) + P(N-2) + (Jv-1) J (-]))P -

q(N-I)C(N-I bN-2)(.1

Note the presence of the caution effect above - the additive P(N-.)

the denominator, which being positive, will tend to decrease the contr,!

magnitude. However, the last term in the denominator is negative ret-I.

ing the probing effect via the sensitivity functions (4.5 - 4.7) and iho4

will tend to increase the control. This can be seen as follows: .p(N-I

is positive (since the cost increases with uncertainty), 3b(%'l) is nec-

tive (this follows from inspection of (3.5)), and P (N-I) is negative i,i,
u

follows from inspection of (2.7)).

S_ . ,--.-:.. The resulting control has thus the linear feedback form with the c*'

modified by the caution and probing effects.

5. Extension to Multiple Input Multiple Output Model

The plant model is

x(k+l) = c + B u(k) + v(k)

with

E v(k) = ; E v(k)v'(j) = V 
6 

kj

where c is an unknown vector, B a matrix with unknown parameter;. Vi' w-

known elements of c and B are denoted as e with covariance matrix P. I'

the helicopter vibration problem to be considered later c is the ae'"li .,

of uncontrolled vibrations. The matrix B is called the "trans-fer n::r

.M2] and represents the effect of the control on the vibrat ion atpl *

The measurement is given by

-(k) = x(k) + w(k) ('.

whe re

E w(k) = 0 ; E w(k)w'(J) = W 6kj

E v(k)w'(j) = 0

The control criterion to be minimized is the expected valie o

cost from step 0 to N

N
P&J(O) FiEC(O)l Ef E{ x'(k)q.x(k) + u'(k-I)Ru(k-l)

k=l

The last control is easily obtained by minimizing ,1(N-I) -ITod i'

u * (N-1) = - [R + E(B'QBIYN- 1) -1 E(B'Q.£IYN
- )

-,,., .. . . Thus inserting u (N-1) in the cost we get

J (, .• .*" N-1 + - Q"_ . . :,.. i . ,. .J (N-i) - E(c'QtlgN
- )_

- + tr(QV)
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* .Thus - E(c'QBIY N - ) [
R + E(B'QBIY

-
)
]  

E(BQcIYNI 5.)

,. • .. =, --'. . . :,, .. ._,Thus

J (N-1) = J*[ N-1,_;(N-1), P(N-I)] (5.q)

where P(N-l) is the covarlance matrix associated with the vstim.itc _(N-I .

The approximation of the stochastic dynamic programming tor N=2 stop,

is done with a first order expansion with respect to u(O)

J (1) = J [1, ^(0), P(l) ] + J (1) () [u()-u(O)] (1,.0)_ 3P(1) au(0) - -

where

A aJ*(1) Pu (l)
3 (1 '5.11i)
P e(l) ; M u u(U)

- .. . . are evaluated at nominal value U(0).
'.v.. Then with

3 *11. ,0), F(1)] (.)
we get

J (0) = min E{x'(1)Qx(l) + u'(0) Ru(O) IY
O

u(O)

+ l + J p(l) Pu (1) • [u(O) - U(0)]

= min E{[c + Bu(O) + v(O)I'Qf," + Bu(O) + v(0)]+u'(0)ej(O)"
u(O)

+ . 1 
+ 

JP(1) Pul) • [u(O) - U(0)] Y I

The two-step dual control is then

u(O) - R + E(B'QBIYO) IE( B'QY O) + .1p(l) 0P(l)[ 1 1. 1

where

J(1) 0Pu (1) - EPmin() m"n
- mn P (1) au(O)

and P is the m,n element of the matrix P. The coefficient 3 introduii.,run

in (5.14) allows the same expression to yield several controllers -is 1,1

(3 - 0 One step stochastic controller (c.utiouS mvoai,)
S ,. = : Two step dual controller

-3 > 2 Modified dual controller with (artificial) extr.i ui-.

6. Application to a Helicopte r Vibrat io Control Problntm

The problem of helicopter vibrat ion control Is to find stitih' HOii ,

h:rmonic control amp) Itudts which, when .11p0 it'd to li' svst urn, i ,

"'.7- *.................-.-...........,'. .;"-""- - - .. :--,,"."" - .. ,' *',s, ,; . ,,, t a 
a
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the vibration occurring in the airframe. The relationship between vibration

g .- ~output and higher harmonic control input is known to be nonlinear and thus

adaptive control solutions are required. In such cases fixed gain feedback

controllers perform poorly. A simplified linear version of this problem

(for two vibration components) can be represented by the plant equation.,

[W3]

x,(k+l) 81e + e2u, (k) + e 3 u 2 (k) +- vl(k)

x2 (k+l) = 84 + 65ul(k) + e6u2 (k) + v2 (k)(61

with
2 2

E v(k) v'(k) - V diag (V1,V 2) ; 1 .~28 , V2 =440 (6.2)

The first state, x 1 represents the rotor hub force amplitude at a

given frequency (one of the harmoa~ica of the rotor r.p.m.). the second

* -**state, x2  represents the rotor blade bending moment amplitude ait the same

frequency. The two controls are the "higher harmonic controls". These

controls excite the rotor blades at higher harmonics of rotational speed.

These cancel out some of the existing unsteady air loads [C11.

The measurements are

y1(kW - x 1(k) + w 1(k)

y (k) - x Wk + w (k) (6.3)

with

E !!(k)wy'(k) - W - diag (W,1 W 2 ) ; 1.1 282 , w2 .440 
2  (6.4)

The initial parameter estimates are generated as (.6) il 6

where the true values are

8 1 - 287.3 684 - 4410

02 - -25.1 65 ' -32.5

6 3 - 14.4 06 - -54.0(6)

The cost weighting matrices are

Q -diag (q1 ,q2 );q 10- 5 q 2 -5 X10-

f- diag (rir) - 4 1- (6.6)1 2) r 1  ,1 r 2 =0

In terms of the notation of Section 5

al B [0 u(k) u(k)(.)

4 5 6~1 ni u2(k

The parameter vector to be estimated is
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8()-[1 82 8 3 84 8 5 86' (6.8)

e .- .*-- " *-:1,; and it is modelled as time invariant
~-*2 ek+l) O (k) (6.9)

with measurements

y1 (k) - 1(k) (80 8 2 031it + v Mk + w (k)

y2 (k) -H(k) [0 4 85 66]' + v 2(k) + w2 (k) (6.10)

whe(e) -k [ 1 u Mk u (k)] (6.11)

In view of (6.2) and (6.4) the covariance matrix of e(k) is block
diagonal

f P(k) 0
P(k) - 1(6.12)

P (k)

The optimum cost for stage 1. assuming it is the last one, is
* 1J (1) -E(c'QO~ Y ' ) + tr(QV)

-E(c'QB Y 1 ) R + E(B'QBIY )FJ1 E (B'Q&cI Y'1 (6.13)
The above can be rewritten as

1~ q 1  P 1 . 1 () + 2 (8 4 + P 4 , 4 (l)) + ql V1 + q2  V2

1- 2 (F2D - 2FGE +G 2C) (6.14)
CD-E

where

C q( 2 + 22 ;) 2  + P 5 ()+
C q 1 ( 2 2 , ( 1 ) ) + q 2 ( 5 p , ( 1r

D q ( 4e + 6,62+
E - ~ 23  3,P 3 (l)) + q2  (86  + P6, 6 (l)) 2

1 1 q( 1 2 + 1 , 2 l 2 q8 485 + P4,5(l))

G - q, (8083 + Pl, 3 (l)) + q 2(0406 + P4 , 6 (l)) (6.15)

The terms J (1) are easily obtained from equation (6.14). The co-

variance update equation is

p i(k)-P i(k-1) - P i(k-l)H'(k) [H(k)P i(k-l)H'(k)+V i4W if I(k)P i(k-1) (6.16)

1-1,2
The nominal covariance i(k) is obtained in terms of previous P (k-1)

and a nominal control ;(k-1) of the "1 step" type.

The sensitivity term P (1) can be evaluated from the above.
u

The two-step dual control (5.14) was implemented for the above
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problem with a "sliding horizon" for a total of 20 steps. The evaluation

criterion is

N
Z x'(k)OA(k)

k-1

Performance was evaluated from 100 Monte Carlo runs for the following

cases:

1. Heuristic Certainty Equivalence,

2. One step ahead optimal stochastic cautious myopic,

3. Two step dual

* . 4. Modified two step dual.

The above runs were made for the case 2 ).

Comparisons are made between the performances of the cautious and dual

algorithms on the system and a conventional statistical significance analv-

sis is done using the normal theory approach [NI,Wlj. The methodology i

given in Appendix A. Tables I & II contain the results of the simulation

runs. Table II indicates that the dual control performs better than the

other controllers over 10 time steps. Table I provides a rigorous argu-

ment that the dual outperforms the other controllers.

The performances are compared in Figures 1-3. In Fig. I the liCE con-

troller uses a very large control magnitude and drives the system hard.

Thus in step I the vibration is increased compared to the cautious and

reduces the vibration earlier than the others. In a realistic situation

one cannot really live with a HCE because of the practical bounds on the

control. The dual starts off higher than the cautious but behaves betttr

after 2 steps.

Fig. 2 compares the cautious, dual and modified dual algorithms. A-

increases from 0 to 6 the vibration at step I increases. Values of n

from 3 onwards do not behave very much better than 6-2 beyond stop 3. Thu-

a-0,l,2 are suggested for implementation and the statistical tests wer.

performed only for these values. Fig. 3 compares the cautious and dual

over a wider scale.

Single Time History Runs

Results of single time history runs over 20 time steps are pl,,tt d i-

Figs. 4-6 for the HCE, dual and cautious controllers. F[V. 4, S, tjjd 6

compare the controls UI, U2, and cost for the three cases resp,,tlvelv.

For all the controllers the controls UIl, U2 reach almost the sam- -11-

7 7 .,,7
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-,..-.~1- ~the end of 20 steps, although they start differently indicating that the

algorithms have learned the parameters. As a trade-off between the rapid

learning and smaller cost, the dual is the best of the three.

Algorithms Compared

Cautious myopic - Dual (5-1) Cautious myopic - Dual (3=2)

Tim Step Test Statistic Estimated Time Test Estimated

k zImprovement Step St atist ic Improvement
k Erk(%) k Z k E Ik(%)

2 -0.36 -1.90 2 -0.21 - 3.2

-3 1.26 4.79 I 3 0.37 3.19
4 5.28 19.56 4 5.32 32.22
5 3.53 23.21 5 7.94 44.48
6 5.43 34.20 6 6.49 47.63
7 4.40 32.51 7 5.43 40.67
8 3.68 34.16 8 4.53 40.67

10 2.13 23.39 10 2.81 28.60

Table 1. Statistical significance test for algorithm comparisons
in the Example (100 Monte Carlo runs)

Average Cost over 100 runs -

k 6-0 -1 8 -2 liCE

Ci Ii C. il Ci clK ilCl Ck il1 I

1 1.72 - 1.84 - 2.07 - 8.98 -

2 1.59 3.31 1.63 3.47 1.65 3.72 4.61 13.56
3 1.07 4.38 1.02 4.49 1.04 4.76 0.62 14.18
4 0.87 5.25 0.70 5.19 0.59 5.35 0.23 14.41
5 0.75 6.00 0.57 5.76 0.41 5.76 0.13 14.54
6 0.66 6.66 0.44 6.20 0.35 6.11 0.13 14.67

-~7 0.51 7.17 0.35 6.55 0.30 6.41 0.12 14.79
8 0.46 7.63 0.30 6.85 0.27 6.68 0.12 14.91
9 0.42 8.05 0.29 7.14 0.27 6.95 0.13 15.04

10 0.38 8.43 0.29 7.43 0.27 7.22 0.13 15.17

Su I- 7 _2_1 5 17 _
Table 11. Average costs for the four algorithms in the Example.

*d4

A'Ij t7.

'%A
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7. 
Conclusion

" 
A suitable expansion of the cost to go in the stochastic dynamici 

programming equation can yield a linear controller that accounts for the
• 

controller's dual effect.

f..

T he siuainrn niaeta ulcnrle ne eti

., .,. :,,...-: ,:: in the performance cr:.teria over the cautious controller.: x ,.. .,, "::'" ; 'For the CE controller the learning of the parameters is faster than
". 

the dual or cautious but the vibration cost is more. As a trade-off be-'." 
tween faster convergence and lesser cost, the dual controller seems to be

the best.

'-Statistical 
Significance in the Comparison of Controller Performance

Two control algorithms are compared by performing a Monte Carlo simu-"lation. 
S independent runs with the two algorithm under the same homo--"geneous 

conditions. yield a set of i i.d. samples CO ) C (2) i 1,2,...,S

, 

Irk' 

tk'

ronm two distributions 
with true but unknown means

, r l l ~~~~~~~~~~ .' '" ";. ""''. .-.. ;: . .'Jland Ji ) respectively, for each tim step k.

7.~~% Cocuso

Ah siample exansio ftecs og ntesohsi yai

prgamn eqato cail iercnrle htacut o h
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are point estimates of the respective true means.

A-statement that

-(1) -(2) (A.2)

indicating that algorithm 1 is better than 2 for time step k has to be

accompanied by a level of significance a of type I error.

Thus we test the hypothesis

: A- j (2) _ J) < 0 (algorithm 1 not better) (A.3)

against the one sided alternative
H 1 : A - J(2) _ J) > 0 (algorithm 1 better) (A.4)

for a particular a level at each time step k.

This probability of error a is defined as
a 0 P(accept H I/H0 true) (A. 5)

Since we get a set of data of the performances of the two algorithm,

on the plant under similar conditions we regard it as a set of natural]y

paired observations.

We consider the sample differences

A C(2) _ (I) ( ,A.6Aik ik - ik

and this set of differences Aik represents a sample with mean

(2 _ k (A. 7)

Thus we have reduced the two-sample problem to a one-sample probl,n.

The hypothesis is tested by examining whether can be accepted as being

positive with high confidence. The test statistic is

a~k
Z (A.8)

* Zk = (A. -

A k

% " whe re

.....- -.. Ak = l Aik (A.9)

-J
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~ ~-l x~2 k)2 (A.l10)

The test statistic Zk has a t - distribution with (S-i) degrees of

freedom. For S large (>50) Z has a normal distribution. Then we have

2 1:( )2(.1

A k S2 i-I

and the hypothesis H1 is accepted if

z > c (A. 12)

where c is taken from the normal distribution tables. For a 1 sided-test

r , V with a 0.05, c -1.645.

The estimated Improvement for each time step k is defined as

-2) -1

Ci
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MODEL ADAPTIVE DUAL CONTROL OF MIMO STOCHASTIC SYSTEMS

Carl J. Wenk and Yaakov Bar-Shalom

Department of Electrical Engineering
and Computer Science U-157
University of Connecticut
Storrs, Connecticut 06268

An adaptive dual control algorithm is presented for clusion of dynamics with discrete uncertainties as
- multiple-input, multiple output (MIMO) linear well as continuous input and output noises. The
- systems with input and output noise and unknown algorithm extends the method presented in [Wl],

parameters. The system parameters are assumed to which was developed only for single-input, single-
belong to a finite %ft on which a prior probability output stochastic systems where there was parameter
distribution is available. The difficulties in uncertainty but only white input noise with known

- characterizing the future evolution if MM0 system covariance. The algorithm for MIMO systems in
information as required by the dynamic prograuining general state-space form presented here is a more

" are overcome through a novel way of using preposte- sophisticated suboptimal solution to the dynamic
" ror analysis. This provides a probabilistic char- programming equation for the multiple model problem

acterization of the future adaptation process and than the state-of-the-art algorithms [DI, SI,
allows the controller to take advantage of the dual A2].
effect. The algorithm presented in this paper, called

the MIMO Model Adaptive Dual (MAD) control algo-
rithm, overcomes the special difficulties posed by

1. Introduction the MIMO system in characterizing the future evolu-
tion of information through a novel use of preposte-

In the control of linear stochastic systems ror analysis. Approximate prior probability
with known dynamics and quadratic cost the Certain- densities are obtained and used to characterize

ty Equivalence (CE) property [Al, B1] is known to future learning. The result is an approximate
hold. When the dynamics are Incompletely known, solution to the stochastic dynamic programuing, the
however, due to parameter and noise covariance un- exact solution to which would give the globally
certainty in the system to be controlled, then the optimum (dual) control.

CE property does not hold and the dynamic program-
ming cannot be solved (Al]. As shown in [B2] the 2. Problem Formulation
optimum control has the dual effect: it affects
not just the future state of the system, but also Consider controlling a HIMO linear stochastic
the future state, parameter, and noise covariance system whose dynamics and measurements depend on an

uncertainty, unknown vector 0. The system state propagates in

To circumvent this inability to compute the discrete time as:
optimum solution, a number of adaptive suboptimum x(k4l) = A(0)x(k) B(C)u(k) + D(3)w(k) (2.1)
control strategies have been developed [Sl,

D Vl, A2, Tl, WI]. Except for [Tl, W1], however, where x(k) is the state n-vector, u(k) is the con-
most of these strategies are only passively adapt- trol r-vector, and w(k) is a disturbance d-vector

. ive [BI]; they do not use the knowledge that future assumed zero mean, white, and Gaussian with vari-
learning will occur. An algorithm using such know- ance W(O). Imperfect system measurements are made
ledge to improve its control decisions is called as:
actively adaptive; the dual effect of the control y(k) - H(O) x(k) + v(k) (2.2)
is used to enhance the estimation and identification where y(k) is the measurement q-vector and v(k) re-

" and ultimately the performance. presents the measurement uncertainty, also taken as
This paper presents an actively adaptive con- zero mean, white, and Gaussian with variance V(0).

* trol algorithm for multiple-input, multiple-output w(k) and v(k) are assumed uncorrelated. The system
(1IMO) linear stochastic systems where there is un- matrices A(G), B(O), D(e), H(G), and noise covari-
certainty in the measurements made on the system, ances W(0), V(0) are known functions of the con-
and where the vector 0 of constant but unknown sys- stant but unknown vector 0, which is assumed equal
tem parameters and noise covariances is equal to to one of M known constant model vectors 0 . J-I,
one of H known model vectors e. il.... ,. The ... ,, with corresponding known a priori proba-
problem of control of multiplejmodel dynamic sys- bilities:
tems considered here is a significant generalization
of the well known "two-armed bandit problem". P[0.G] = A (O); j-1, .... M (2.3)

The aspects which make the

problem considered here quite general are the in- E AJ(O) = 1 (2.4)

Research supported by the AFOSR Grant 80-0098. J-1
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The objective is to obtain a control sequence the solution of the stochastic dynamic programming
{u(O),... ,u(N-l)) minimizing equation (2.8) for M models can be reduced to coa-

puting M(M-I)/2 two-model costs by use of a result
varying 0re [() (2.5) which may be found in lW]. Only the two-model

where the cost is quadratic about a given, time- cost approximation will be developed here using
varying reference trajectory: models 01, '8 The prior probabilities at k in the

1two-model problem are
7 x (N)]' Q(N)[x(N) - Xr P[e-e 1JZ(k), u(k)] = 11(k), P[6-621Z(k),u(k ) )

N-1- 1-fl(k) (3.1)+ I k {[x(i) - xr(I)]' Q~i)[x~i) - xr(I)]( .1
=r For computational feasibility the cost is ap-

proximated as follows: the future controls
+ l[u4i) - u(i)] ' R(i) [u(i) - ur(i))) (2.6) (i > k+l) are assumed to be of the DUL type structurer-r with time-varying probabilities as more information

* subject to equations (2.1)-(2.4). The information becomes available to the controller. Thus
vector at time k, Z(k), consists of the measure- E[J*(k+l)fZ(k). u(k) -* menits and controls up to k:
mt aE{min 

E[C(k+l)IZ(k+l),L(k+l)]IZ(k),u(k)} (3.2)Z(k) - {y(O),Y(1) ..... y(k) ,u(O) ,u(1),.....u(k-l) } L(k+l)

where L(k+l) is the set of parameters in the con-
(2.7) troller structure from k+l through the end. Usin.

The optimum control u*(k), a function of Z(k) and the total probability theorem the (approximation ofthe statistical description of the future measure- the) optimum cost-to-go may be written asments [Bl], is obtained by solution of the stocas- J*(k+l) mm min {H(k+)E[C(k+l)IZ(k+l)L(k+l),8=01]
tic dynamic programming: L(k+l)
J*(k) - min E{.}[x(k) - xr(k)]' Q(k)[x(k) - xr(k)] + [l-fl(k+l)]E[C(k+I)IZ(k+l),L(K+),

u(k)2rr
1= ee 2 1} (3.3)k'+ I u(k) - u(k )]'  R(k) u(k) - u(k )] 2

' r u where by Bayes' rule

+ J*(k+l)IZ(k), u~k)). (2.8) f(k+l) - [0=9llZ(k+l)]

The exact solution of (2.8) is impossible due to - l y(k+l)JZ(k)u(k)0 1the "curse-of-dimensionality" ; the parameter + l '' 2 (3.4)and noise covariance uncertainty prevent the exact 11(k) (3.41computability of E[j*(k+l)IZ(k), u(k)]. The state- L pIy(k+l)IZ(k),u(k),8.8 1 1of-the-art in suboptimum algorithms which circum- with the appropriate Gaussian densities in (3.4)
vent this difficulty has largely consisted of the beingHeuristic Certainty Equivalence (HCE) algorithm -8
[Bl], where p[y(k+i) Z(k), u(k), j!M

8(k) - F A (k)e( 2.9) N[y(k+l); y (k+l)lk), S (k+l)lk)] (3.5)
J.l where the means and variances in (3.5) are obtained

is assumed the true parameter vector, and the from two Kalman filters, matched to O-Oi, J-1,2,is Desh me dhtrupayamioter veDtor ao th [respectively.
Deshpande-Upadhyay-Lainiotis (DUL) algorithm [DI], Next note that (3.2) requires performing awhere the model-optimal controls u (k) are computed multiple integration over the elements of y(k+l).

and the actual control taken as This is not computationally feasible, in general,

M and will be avoided through the following procedure.u(k) E Aj(k) uj(k) (2.10) From (3.4) and (3.5) it can be seen that y(k+l) and
J.l i . f(k+l) are related through a mapping described by

The active Model Adaptive Dual control algorithm -1 1 -1
(MAD) developed in [Wl] for systems in input-output *j(y_yl) 'Sl (y-yl)- 1(y- ' S 2 (y-y 2 ) =
form was able to achieve significant perform-
ance superiority over the passively adaptive (non-dual) HCE and DUL algorithms by directly obtaining - q/2
a an accurate approximation of E[J*(k+l)!Z(k), u(k)]. n 1(k)[l-(k+l) ]

3. Approximate Solution of the Stochastic Dynamic Isl,1q/2 [l-1(k)T1(k+l)

Programming Equation by Pairwise Preposterior
Model Discrimination where the time arguments of y(k+l), y k+1)jk) and

The computation of E[J*(k+l)IZ(k), u(k)] in S (k+l)k)
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1(k+l) may result from an infinite number of y(k+l), from a recursion for the linear system with 8=,
it is clear that R(k+l) is not a sufficient statis- quadratic cost, using a DUL control policy withi

tic for y(k+l). However, f(k+l) can be used to control parameters L (k+l). Details of the
serve as an approximate sufficient statistic". nominal posterior proiability generation and the
Thus (3.3) may be rewritten as recursions for J are contained in [W2].

J*(k+l) m (1n(k+l)E[C(k+l)tZ(k),u(k),

L(k+l) 4. Numerical Studies

f(k+l), L(k+l), 0=1] A second order system is considered with the

+ [1-fl(k+l)]E[C(k+l)IZ(k),u(k),H(k+l), following two-model system description.

L(k+l), 8=82] (3.7) A(Oe) = A(82 ) =

The outer expectation of (3.2) over y(k+l) is
then replaced by an expectation with respect to

p[IT(k+l)IZ(k), u(k)], the preposterior probability B(8) - 10.45 2]'

density [RI] of R(k+l), the "model information
state" at k+l. An approximate preposterior density B(O2) " [0.9 1]'

with two delta functions at locations 11(k+l) and D(01) - D(62) = diag(l.l)

1 H2 (k+l) is used as in [B3,Wl]. 1 (2

Having established an implementable preposte- H(8 ) - H(8 diag(l,1)

rior density, the next step is to construct the 
4

minimization in (3.7) with respect to the time- W(0 1 ) - W(e 2) - diag(l0 -4,2.25)
varying future controller parameter set L(k+l), a -2
set depending of course on R(k+l). An easily im- V(8) - V(62) - diag(lOIO 2

plemented approximate solution to this minimization 1 2

is obtained by assuming s future sequence of DUL A priori, P(O e 1 )-P(08) - 0.5. The control
controls represented by L(k+l): objective is to take the initial state of x(O) -

EJ*(k+u)IZ(k), u(k)] - J(k+l) [0 0.1]' and make it follow over N = 5 time stages
E k kkthe state reference trajectory

J ((k+)E[Ck+)IZ(k),u(k),I(k+l).L(k+l),8.
1 1 Xr(l) 1 Xr(2) - x(3) 0"Xr 1 =.5] 1,2

+ [l-H(k+l)]E[C(k+l)IZ(k),u(k),1(k+l),L(k+l),8=82]) 0o- I 1.
x Xr(4 )  X r r(5 )

* p[In(k+l)[Z(k), u(k)] dll(k+l) (3.8) 101.

Using the two delta function preposterior density with quadratic weighting matrices

above and performing the integration gives the Q(O) = 0 and
approximate cost-to-go resulting from a particular Q(l) = Q(2) - Q(3) diag(O,1)
control decision u(k):

J(k+l) = ](k)fl(k+l)J1fk+l),u(k),Lll(k+l),3=fiJl Q(4) = diag(0,5) , Q(5) = diag(0,50)

111There was no penalty associated with the control,
+ 11(k)rll'k+l)12[k+l-  u'k',l2'k+l,2.-. R(k) - 0 V k.

+1()1-1kl)Jl
2~ 'l 12 2 The first test was to compute the sample means

and sample standard deviations of the cost samples
+ [l-11(k)]TI(k+l)J2[kl,u(k),L1(k+l),e:] OPT JCE MAD2 2 11 C , ,and C . The results are con-

+ [1-1(k)]11-12 (k+l)]322 [k+l.u(k),E22 (k+l),O= 2 1 (3.9) tained in Table I.
_ Algorithm OPT HCE DUL MAD

The nominal sequence of control parameters Lj (k+l), Sample mean 60.97 269.3 223.4 110.4

t, J-1,2 cones from a time-varying DUlL weighted Sample standard 73.9 443.6 406.4 137.8
, sum of model-optimal controls. This sum is com- deviation

puted with nominal weighting factors given by: I
(I) f(k+l) = f1 (k+l) as the sufficient statistic Table 1. Sample Average Costs and Standard

for 8 at k+l, Deviations
, (ii) subsequent nominal posterior probabilities This table gives the first indication of the

Hl10(1) that 8-81 which evolve as i=k+2,..., superiority of MAD over HCE and DUL in both mean

N-1 when this DL control is applied to the cost reduction and performance cost variability.
system with 0-08. Note that MAD has reduced the mean cost by 51% over

J*DU, and by 59% over HCE. MAD has reduced the cost
The single-model optimal control parameters Dilen by 5 % over L a E.

are obtained from a standard lingar quadratic pro- variability by 66% over D and by 69% over li.
blem with e known. The costs Jtj are obtained Are these results truly statistically signifi-

823

,d%



cant? Are the true means ordered as the sample In these cases active adaptation can be expected to
means would indicate? To answer these questions, improve the transient behavior in adaptive control
a rigorous statistical test for the comparison of by speeding up the adaptation process.
controller performances was developed in [WI]. The
sample means of the differences and the standard References
deviations of the sample means are given for the
algorithms in Table 2. They indicate that [Al] M. Aoki, Optimization of Stochastic Systems,

Significance Estimated New York: Academic Press, 1967.
Algorithms teststatistic Improvement [A2] M. Athans, et.al.,"The Stochastic Control of
Compared A athe F-8C Aircraft Using a Multiple Model

HCE - DUL 45.866 13.767 3.3316 17 Adaptive Control Method, IEEE Tr. Auto.

HCE - MAD 158.86 29.881 5.3164 59 Control, AC-22, pp. 768-780, Oct., 1977.
[Bi] Y. Bar-Shalom and E. Tse, "Concepts and Methods

DUL - MAD 112.99 27.033 4.1797 51 in Stochastic Control", in C. T. Leondes (Ed.)
Control and Dynamic Systems: Advances in

Table 2. Statistical test results for algorithm Theory and Applications, Vol. 12, Academic
comparisons Press, 1976.

the hypotheses that MAD is better than both HCE and [B2] Y. Bar-Shalom and E. Tse, "Dual Effect,
DUL are accepted. Certainty Equivalence, and Separation in Sto-

Table 3 illustrates the manner in which the chastic Control", IEEE Tr. Auto. Control, Vol.
need for active learning is sensed by MAD. For AC-19, pp. 494-533, Oct., 1974.

various possible values of the control decision at [B3] Y. Bar-Shalom, R. E. Larson, 1I-. A. Grossberg,
"Application of Stochastic Control Theory toperiod 1, MAD evaluates the future learningResource Allocation Under Uncertainty",

tunities and calculates the future costs. For eltI
u(l) - 4.35 the preposterior density characterized Tr. Auto. Control, Vol. AC-19, pp. 1-7, Feb.,

by 11(2) and 11(2) indicates that not enough learn- 1974.
ing 1ii take place to minimize the effect of the [DI] J. G. Deshpande, T. N. Upadhyay, and 1). G.Ing will2 take plae oto inimize he efft of te Lainiotis, "Adaptive Control of Linear Sto-term J 1 (2) in the cost to go equation (3.9o). chastic Systems", Automatica, Vol. 9, pp 107-
3 21 (2f represents the cost of a mismatched control- 115, 1973.
ler-which does not learn fast enough what the true 1. . i f3n
system is). For larger u(l) the learning is faster, [Sl] G. N. Saridis, Self-Oranizin Control of

but fte u() -.09thepric ofleaningexcedsStochastic Systems, Dekker, 1977.
but after u(l) - 5.09 the price of learning exceeds [TI E. Tse and Y. Bar-Shalom, "An Actively Adap-
the benefit. -ieSseswt

Table 3 also gives insight into how to deter- ptive Control for Discrete-Tine Systems with

mine a priori (or even on line), in a non-Monte Random Parameters", IEEE Tr. Auto. Control,

Carlo fashion, when it is valuable (and necessary) AC- . pp. 139-117, April, 1973.

to use an active, dual control decision making al- [WI] C. J. Wenk and Y. Bar-Shalom, "A Multiple

gorithm like MAD: when the penalty for a mismatched Hodel Adaptive Dual Control Algorithm for
controller is large and its probabilistic contribu- Stochastic Systems with Unknown Parameters",
tcon to the cost is significant. IEEE Tr. Auto. Control, AC-25, No. 4, pp.

703-710, Aug., 1980.

u(l) J(2) 11(2) 112(2) Jl(
2
) J12 (2) J2 1'2) J2 2 (2) [W2] C. J. Wenk, "Decision Strategies with

4.35 126.5 .9416 .05747 642.93 68.49 2153. 66.97 Dual Effect for Inseparable Stochastic
4.55 104.0 .9488 .05039 65.68 68.04 1557. 66.45 Control Problems with Continuous and

4.75 76.00 .9554 .04389 66.59 67.80 504.5 65.98 Discrete Uncertainty", Ph.D. Thesis,
MAD 5.09 67.76 .9653 .03415 68.56 67.66 116.2 65.25 Univ. of Conn., EECS Dept., April,1981.

5.35 68.19 .9713 .02824 70.29 67.75 114.4 64.79
5.55 68.78 .9754 .02421 71.85 67.93 121.5 64.48

5.75 69.47 .9790 .02067 73.56 68.20 129.8 64.20

Table 3. Cost Breakdown and Learning for MAD

5. Concluding Remarks

An actively adaptive control algorithm has been

derived for multiple input, multiple output stochas-

tic system in general state space form possessing
both continuous and discrete modes of system uncer-
tainty. The algorithm, called Model Adaptive Dual
Control, is the only actively adaptive controller
for this class of systems. Rigorous statistical

-.tests were used to show statistically significant
performance improvement in the new actively adapt-
ive MIWO MAD algorithm over two state-of-the-art
passively adaptive control algorithms. It has been
shown in particular that when there is heavy termin-
al state penalty and the control period is relative-
ly short, passive learning often does not suffice.
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Dual Control Guidance for Simultaneous Identification
and Interception*

K. BIRMIWAL± and Y. BAR-SH-ALO~it

III (Idhim ct dii il-con ntl guiiidance al gorithinn enahh's inonntg target Int erceptiton fin thle

PITiC nt, o / (III in!t'rlerintg target when ,n.s , nonlinear. state dependent featutre'
ilei.\ I rt'iieiilti at i alahle tot- target idt/ei iht ion.

KeN %Nord% Gutidaince %,stcn: dual control. Kalman filters. identification, dynamic programming.

tiract \n adaptt~c diial-Lotiil Lffidance algorithm is observations and the inherently unknown time-to-
rsclied itr intercepiine I moii! iirci it) the presec it oan intercept. The result is a highly nonlinear stochastic
interieritig taret ideco.\ i in a stitchastic cm irotient Twko se- cnrladdcso-aigpolm ihbt
cluetce. itf measurements are obtained it discrete poiints in timte, oto n eiinmaigpolm ihbt
no\%ci er. itsI not certain \% hict sei.tience camic from the target of continuous (all noises) and discrete (track identity)
interest and %%hich from the dci' Assrtcated v\iih each track, sources of uncertainty, in which the control has a
the intercptor alsot reccoes ntiis\ state-dependent featured

nlesurntntsThciltinunicintrilforhe ntrcetor~hch i dual effect (Feldbaum. 1965): in addition to its effect
i sen b\ t he solution ItII flie 10 ih as!lic it amic proigrammintg on the relative interceptor,,target~decoy states

equtatlion is not nunericaill\ tejisibte to) Obtain. An appriosimittc themselves, the present interceptor con-trol also
siiutiinothseqatitn sibtanedbyesauatngtcsluetth affects the future feature observation process and

lutitre informtation gathering I is is diitihrough the use of'
prepistertiltaahi approxinaie prioir pritbabilit\ densities hence the target decoy identification uncertainty.

00,ireiib~iineCtand used to describe thle fututre learning and control. Specifically, the interceptor control must be used for
0 in this aa.the ititerceptoir ,fiiil is usedl for inlormafiitn

.-itherinti III order to reduce thle fLUur tareci and deco\ inertial information gathering about the true target track
mecasurcicit error, and CithanIce the hirherable target decoy by : (a) reducing future target and decoy inertial
ixitu1rc iltileetces )I si1,eqieit disci niiatiiii hetacrn the measurement errors bit changing its own statean
iic ti.tei andi the doSinmulatioin studies tiate hoiikn the an

ohe t ~esit tile Icli hence the relative states. and by (b) enhancing
obsern able target decoy feature differences for sub-
sequent discrimination between the true target and

I IN IROMt (A 10\ the decoy. All of these information theoretic
*A \F\V ONTROL-1)t CISION strategy for intercept- characteristics are functions of the inter-

ing a mi.'trin- target is dev eloped where the target is ceptortarget decoy states. which are in turn
usinLc a delfensi~e deco in an enxironinent best directly affected by the interceptor control. The

* .described by at stochastic process. The decision- decisions must also simultaneously be used to
making problemi takes place during the terminal optimize the function of interceptor guidance
phase of interceptor guidance. toward the target (control proper. which is

At discrete points fin time thc interceptor receixes inseparable from the information gathering). The
nots\, stat c-dependent. feattirc measurements: one problem is further complicated by certain con-
fromn the trUe tarLect and one from the deco\. It is straints: maximum fuel capability, and possibly.
issumred that therc is nit measurement to track maximum time-to-intercept and interceptor state

asOi'cattotl Lncertaitl, httxxever. it is not certain constraints.
I. hich mecasurcmcnl sequence camec from the target This is an example of a nonlinear stochastic
and Ml ich fromi thc dcco\. Additional sources of control problem in which the optimum solution
a ncerta int\ arc the inperfect1. noisc-corr-uptcd State exhibits an inseparability between the dual actions

of the control decision in gathering information
about the partially un known system (reducing

Receisecd h\\ is 1951.Omt seilON itvnary195 ersearcfh Uncertainty .and simultaneously changing the

p)I .i 111 u isnt presetied i at am If V i( meting Pts paper \%its system state itself (the control function proper.
eictinetiihk fur piihhic.iiuii III rcied set trtit by Associate which requires minimum uncertainty or maximum

I dufof 11 siretisu iiicr the titctiiii of Ititiir [B R) ( information about th1tt) ngnrl ytm

t Depairtment itf lectrical ItuIneiuug1L mid ( impiter science with both continuous and discrete nonlinear
1 -14. t tisersits oIi oiuittect Iii , t s I 06'6Xh. I 's.A probabilistic structures create decision-making

737
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Gaussian. zero mean (WGZM) with known co- where 0 =j.J = 1. 2 represents the event that thejth
variance Q1. track is the track originated from the target of

Let the motion of the interceptor be given by interest.
The interceptor's objective is to choose the

x k + I = .4xl(kI - Buiki - Gldwki control strategy u(k) that minimizes the expected
terminal weighted relative, position of the

k = 0. 1.2.... (2) target/interceptor (T I) at the unknown (random)
terminal time N. subject to the dynamic control- where ufk) is the interceptor control vector to be effort bound and speed limit of the interceptor. For

determined at time k and wilk) is the process noise. efr on n pe ii fteitretr o
WGZM with known covariance Qp s the problem to be meaningful, it is assumed that the

The withuremn couarioncoe to vinterceptor is capable of intercepting any of the
The measurement equations of the two vehicles vehicles in finite time. This leads to the stochastic

*. are control cost criterion to be minimized at time k

zlk) = Hx 1(k) + v,(k) / = 1.2 (3)
J(k) = E[C(k)]i ~ ~k =l.2 .... --

. = E uW{i)Rli)nli) + g'[xo(N), xi(N)]
where vl(k) is the measurement noise. WGZM with t R +[( N
known covariance R1 . 1

The measurement equation associated with the Qg[xo(N).x(N) ]ZA. PA. Uk- 1 (10)
' interceptor is

z14k) = Hxl(k) + vi(k) k = 1.2.... (4) subject to

where v,(k). the measurement noise of the inter- 1u1i)I < um"(i) Vn. Vi > k (11)

ceptor. is assumed to be WGZM with known
covariance R1.

To discriminate between the two vehicles, a
feature measurement fl(k) associated with each ru(i + I) < z '  Vi > k (12)
vehicle I is obtained. For simplicity, this feature
measurement is assumed to be a scalar and is a where R(i) is a known (time-varying) control
function of the state of the vehicle xl(k . the state of weighting matrix: g[x,(N .x1(N)] isa vector-valued
the interceptor x1(k) and the true feature 01. that is function, whose coriponents are the positions

differences between the states xg(N) and x(N); Q is
Jirkl = f[45,. xl(k). x(k)] + 71(k) I= 1.2. (5) a knownconstantweightingmatrixassociatedwith

k = 1.2.... this relative terminal TI position state: u,(i) is the
nth component of the control vector u(i): Oa'a(i) is a

Here. it is assumed that 0, # 2 for the known, time-varying dynamic control effort bound,
identification purpose and 7,k) is the additive white which depends on the kinematic acceleration
noise, independent of the states, assumed normal capability of the interceptor: r1(i), a function ofx(i)
with mean zero and variance a. is the interceptor's speed at time i and 1 x is a known

All the noise sequences are assumed to be speed limit of the interceptor.
mutually independent. Let an admissible control decision vector u(k) be a

In this formulation of the target decoy inter- function of Z' and ft' as well as the statistical
ception problem. it is assumed that the vehicles description of the future observations (Bar-Shalom
follow the state equations 0 )without changing their and Tse, 1976). Then the optimum control strategy
state models. The extension of this formulation to for this nonlinear stochastic control problem is
the case of the target decoy changing its state model obtained by applying the Bellman's Principle of
is discussed in the example section. Also, this model Optimality. which leads to the stochastic dynamic
can easily be extended to the case of state-dependent programming (SDP) equation. Solution of the SDP
feature measurement noise. equation yields the globally optimal control, which.

The following notations are used: in general. has the dual effect (Bar-Shalom and Tse,
1974: Feldbaum. 1965). At time k, the SDP is

= z1(i).zl(i): I = 1.2: i = 1 .. k: (6) described for this problem as

l = P1): 1 - .2: i = 1.2...7) J*k) = m in E[u'(k)R(k)u(k)

U i = = .IA ..... k': (8) 041 +
ir(k) =P:0, = I IZk, tlk. L -k 1 (9) + . * (k + I lZ1.10, 1.1" (13)

::%
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subject to where by Bayes" rule

uu,k l ) < "_ "(ki Vn 114) n k + 1) = P :0 = lf2' 1. .flk .

and + + ( k )I
T1(k + I) "mr' (15) pIz(k + I).P(k + )iZ '.f, Uj't"=  2]-l-'

where for a given u(k). J*(k + I) is the optimum I'H +.P(k + UiZ',fk U1,0 = I]]

cost-to-go from time k + I to the unknown terminal (19)
time N and the expectation is done with respect to
all future random variables. including both inertial where
observation errors and the feature parameter
observation errors. z(k + I) [z(k + I).z',(k + I),zi(k + i]" (20)

The exact solution to this problem is impossible
due to the fact that no distribution over N is and
available and because of the curse of dimensionality'
iBellman. 1961). This can be avoided only by a P(k + I) [3 i(k + l),f02(k + i)]'. (21)
recursion for the cost-to-go which here does not exist
because of the track uncertainty. We present next an Here z(k + I ) and (k + I ) are respectively the
approximate solution of this problem. (column) vectors of all state measurements and

feature measurements at time k + 1.
3 APPROXIMATE SOLUTION OF THE STOCHASTIC Assuming that the conditional joint density of

DYNAMIC PROGRAMMING EQUATION z(k + I), P(k + I) in (191 is known or can be
For computational feasibility, the cost is approxi- obtained, the computation of (17) requires perform-

mated as follows: the future control (i > k + I ) are ing a multiple integration over their elements (20)
assumed to be of the DUL type (the *partitioned' and (21). This is not computationally feasible and is
control obtained by Deshpande. Upadhyay and avoided as follows: since the mapping from z(k + 1)
Lainiotis. 1973) as and P(k + I) to ir(k + 1) is not one-to-one (in fact,

many-to-one). n(k + I ) is not a sufficient statistic for
u(ij = 7r(i)u,(i) + (I - ir(ij]u,(iJ (16) z(k + I) and P(k + I1). However. ,t(k + 1) can be

used to serve as an 'approximate sufficient statistic'.
where uj(i) is the bounded optimum control at time Using this approximate statistic in (18) and then
i. given ( =_j with time-varying probabilities as replacing the outer expectation of(17) overz(k + I)
more information becomes available to the con- and p(k + i ) by an expectation over nt(k + I) results
troller. and where the controls uj(i) and ui) satisfy in
the constraints III) and 12) as shown in the next
section. With this the optimal cost-to-go in (13) is E[J*(k + I )IZA.M. k -&
replaced by

m*rain m ir(k + I )E[C(k + I )IZ'. #I. U,~~E J.l*lk + I ) Z1. . / .' U, + . ,

El min E'('k + I /Izk./I k I L'k Lik + 1)11 ir(k + I}.Lk + I1.) 0= I]

i.i&" .i + [I - ir(k + I)]E[Ck + I )IZk.flk, Uk.

, Z 117) r(k + l).L(k + 1), 0-2
• p[7(k + I )IZk.f. UA]dn(k + I) (22)

where Lik - I) is the set of parameters in the
controller structure from k + I through the end and" "where p [nlk + I)IZ . fl' . U' ] is the preposterior
", ± I i is the cost function. Using the total probability density ofn(k + I i(Raiffa and Schlaifer.
probabilit" theorem, the (approximation of the) 1972). The use of the exact density in (22) would

• optimum cost-to-go may be written itsp c- m e trequire numerical integration and this is avoided

J*k + I min : ir(k + I IE [(k + I IkZ using a two-point delta function density as in Wenk
L I, and Bar-Shalom (1980) and Wenk (1981).
A Lik + IH.( = I ] + [I - n(k + 11] As the vehicles' discrimination capability in-

t I-+ 2 creases, the preposterior density exhibits a bimodal
character. largely concentrated around two distinct

(18) locations, say nt, k + I and n2(k +). The
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approximate preposterior density then can be taken vehicle xdlk) and the interceptor x1(k). the future
as controls to be applied and the process noise, yet to

come. To obtain a solution of this nonlinear
stochastic control problem. N is taken to be the

-r Ir(k + 1)] + [I - nlk)] same for both tracks and is estimated as the

,[yr(k -1- I1) - nk + I)] (231 minimum number of sampling intervals including k
in which the interceptor will intercept either of the

where the delta function locations nilk + I) and two vehicles maintaining its control effort bound
r .(k + I satisfy and its speed limit. Clearly. N is reestimated at each

time k and the corresponding estimate is /(k).
0 <r 2(k + I n(k) < irI(k + 1 i. (24) The nominal sequences of future posterior

probabilities frt,(i): i.j = 1,2 are generated by
The locations 7nI(k + I) and 7r2(k + I) are constructing a future observation and control

obtained by matching the first two moments sequence, based on the statistical information
produced by the approximate density (23) to the contained in the approximate preposterior density
true preposterior moments of n(k + 1). The explicit (23), which in turn is a function of the control u(k).
expressions for r, and n 2 are derived in the At time k, the nominal values for time k + I and for
Appendix A (Wenk. 1981). Substituting this simple the path ni are obtained as follows
preposterior density (23) in (22) and assuming
that the minimization in (22) occurs when N.j(k + 1) = N(k) (27)
L(k + I) = L(k + I ) representing the future con-
trols to be of the constrained DUL type. gives 7r j(k + I) = n.(k + 1) (28)

approximately the expected cost-to-go resulting x,.(k + 1) = A, (kIk) I= 1.2 (29)
* from a particular control decision ulk) (Wenk and Ximj(k + I) = Aii(klk) + Bu(k). (30)

Bar-Shalom. 19801

["+ +The nominal optimal control for the interceptor
%]j(k + 1). where 0 =., (k + I) = t,(k + i) and

+ ntk) [I - ni(k + I] f, 2(k + I) + [I - n(k)] the interceptor considers the Ith track as the track
7r",(k + lIJ 2 ,(k -4- I1) + [I - 7r(k)] [I - n21k + I)] from the target, isgiven by the solution ofthe LQG

• J,(k + I) (25) problem (for the estimated terminal time
N.j(k + I )). In case this optimal control exceeds the

where bound (II). the appropriate bound is used. Then the
nominal DUL control for the interceptor at time

fJ,,k -- I E [C(k + I )Izl./3A. t k. .,.j(k + I k + I is given by

- min E[C(k + I)IZ'.I1k. L. ,(k + I)= f,,,(k + I)UMi(k + I)

itjk + l).L(k + I ).0 (]. (26) + [I -frfk + l)]'D9.j(k + 1). (31)

The nominal sequence of control parameters Ifthe resulting nominalspeed oftheinterceptor of
L.,Ik + I ): .j = 1. 2 are given by time k + 2 exceeds the limit (12), then the

magnitude of this nominal control rj(k + II is
(i) n(k + I I = mtAk + I I as the sufficient statistic reduced by considering the control t.l, .(k + I),

for 0 at k + I. and 0 5 < I (i.e. the direction of the desired nominal
0i) subsequent nominal posterior probabilities control is unchanged) so that the interceptor moves

-,,,,i) for i > k + 2. representing the prob- at its speed limit.
ability at time i of the first track being from Observe that the nominal feature measurements
the target when 7rrk + 1= n,(k + I) and at time k + I are not generated since the
0 = i. information of these features is contained in

Details of the nominal posterior probability nl(k + I) and It(Ak + 1).
generation and computation of J., are contained in For time i > k + 2. the quantities l .j(i), 1,.j(i),
the next section. fm.j(i), mj(i). ,Vj(i) and U,.i) are obtained

recursively as follows:
-1 (I\F RATION OF Til NOMINAL PARAMITERS

,.,'" ANt) THE (()1-lO.GO COS,,(i = Ai~imj(i - I) I = 1,2 (32)
, The intercept time N is not necessarily the same

for the target and for the decoN. For both the tracks. .imj(i) = 41,4,j,)i - I ) + Bf1lj(i - I ) (33)

N is a complicated function of the states of the fi',0) = f[t01j. Xmj(i). 14(i)] I = 1.2 (34)
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Y Here, if the cotj.iri nal density of P(k + I )in (49) is
determined mai by the noise characteristics of
,(ik + I ) (otherise. a better approximation of this
conditional density has to be obtained and this is

* 7 - - omitted in this example so as not to deviate from the
- - " - -b a main theme of this paper), then this density is

...- " appoximately g.. :n by

-b: *,Isn(>.-*)I ptp(k + l)sZin L/ u.oe =y0

1: Interceptor N[E [P(k + l)IZA+t.3k, UA'O=j1. ,~ 00j
Fit(..I. Proiection b)of the length feature 0of the th ehicle (a j = 1,2 (50)

on the interceptor's I) line-of-sight.
. where

fll(k) = 011sin [;,(k) - qil(k)]l + xl(k) I = 1.2 E [#L(k + IlIZk+.Ifi . UlO =j]
k = 1,2k.... 0 1lsin [,(k + Ilk + I)- ,1(k + Ilk + )]I

(46)I= 1,2. (51)

where Here, 01j is as in (34) and "1(k + Ilk + I),ep(k + Ilk
+ I) are approximated as

1 y(kI -. ,(k) rt

tan k)- x(k) 2 <, (k) 2 11k + Ilk + 1)

(47) tan- ' 
1(k + Ilk + 1) - t1(k + Ilk + I) = 1,2.i,(k + Ilk + 11- .i,(k + Ilk + 1)

and ' ( I i (.. (52)

and P
,lk) =tan-t -- :5;0(k)!. (48) +YAk + Ilk + 1).0k) 2 2 k,(k + Ilk + 1) 2 tan-'- (53)

xi(k + Ilk + I)
Here, though the noise 2,(k) (assumed Gaussian) with

has the real line as its support. this is an
approximation for this example since (k) is always il(k + Ilk + I)= E[x,(k + I)IZA+t, UAI= 1,2

. non-negative. This approximation js acceptable if (54)
" k > o x. itk + Ilk + 1) = E[x,(k + l)lZ|', Uk ]  (55)

Now, the estimation of the posterior probability
rik + I). when z(k + I ) and p(k + I) are available being obtained using Kalman filters.
(i.e. to update the system), the computation of the Similarly, rewriting (35) to obtain the nominal
nominal posterior probability ftj(i) (35) the posterior probability f,, (i) gives

*determination of the one-step predicted value of
ik + I). i.e. Oj IA.4) and the associated covariance l + I ,.j(i - I)
S, JA.7) will complete the discussion for this L ,(- I)
example. Since the feature measurements (46) are a
highly nonlinear function of the states, the .P[Lj(i0lzp,#,.M UJ'. 0 =2])1-ti-_ i-: (56)
conditional joint density ofz(k + l).P(k + I)in(19) Pf&(i)lijfi j ,O= I ] (6

is not directly available. Observe that at time k. we
do not compute 7t(k + 1) using (19). rather we As in (49) we assume that the conditional
compute nl(k + I) and t 2(k + 1) using (A.10) and distribution of LY( in (56) is approximately

" (A. I 1. Hence, to obtain ittk + I at time k + 1. gaussian. Then, simplifying the expression in {} of
when the measurements z(k 4 ; and Pik + I) are (56) gives the equation for ft,.(i) as

a ailable. we rewrite (19) as I - ,.jli I )

I - irk) + ftu 14exp{12

ntik + I

".o -=zi -]Li - L249)
p[P(k + I )IZk+1'fl. L". )= 2]] 1 0 ][ 17

A~k + I) )I Z+ 1, Ik. LYk ) = I1 (9 (57)

.. S. ..A. . . . . . . . . ..
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Now j defined in (A.4) is obtained similar to (51) tracking performance. Using such a scheme to
as detect the switching of models and then reinitializ-

ing the switched-state model, the present work is
E[#3,(k + I )IZ.flk. Uk,0 j] easily extended to the case of the target/decoy

01 4sin [-LI(k + Ilk) - 1 (k + IJkflj changing models.

I= 1.2 (58)
6. SIMULATION RESULTS

where As an evaluation of this algorithm, the above
example was simulated. Two sets of feature lengths

.,(k + Ik)- f,(k+ Ilk) were chosen: one for the target and decoy being
/ -.(k + Ilk) - i(k + Ilk) nearly 'identical' and the other corresponding to

more separated features. For each set of features,
and two pairs of distinct trajectories for the two vehicles

were considered. Initial values of these trajectories
+I z ta k + Ilk) wereqi1(k + lk) tan - . -- + I- (60)

.Y1(k + I~k)
Trajectories I

with [8000m 1 8000 m1

i,(k + Ilk) E[x1(k + IZ. 3k. Uk] (61) x,(0) lOm/s -'lxm/0)s (65)

0and [ m/sj 0 m/s

i,(k + Ilk) = E[x,(k + I)lZk.f1' . U'] (62) Trajectories 2

being obtained using Kalman filters. 75om F85OOm1
Finally. S. the covariance matrix associated with I0 m/s0

(58) may be taken as x(0) Om X Om/s

s [ - j =.2. (63) [ 100m/ L 100m/s (

The sampling time interval T was taken to be
A final remark on the extension of the present 3 sec. The process noise covariance matrix asso-

work: in the analysis presented of the target/decoy ciated with the interceptor was taken to be zero

interception problem. it was assumed that the target while for the two vehicles, it was

and the decoy will follow the same state models

0throughout. i.e. the models do not switch to other0
state models. After this algorithm of the target/ = =m67)

decoy interception problem has been activated, if 0  0.11

*any of the vehicles do switch to a different state
model, that switch must be detected and the The interceptor's state measurement noise co-

corresponding filter should be reinitialized. Notice variance. R1 was taken to be zero (the interceptor
that the analysis presented in this work remains knows its state with relatively more certainty and no

Kalman filter for the interceptor) while for the twovalid for the switched model as long as the states

propagate according to an equation similar to (1). vehicles, it was

for example a switch from a nearly constant speed 21 1
(non-maneuvering) model of (41 ) to a nearly R= R2 = O51(m2). (68)
constant acceleration (maneuvering) model with the L 0  2 5

state vector
The feature measurement noise variance was taken

x = ., ', . (64) to be a' = a' = 4m'. Since no information about
target/decoy was available at time 0, ir(O) = 0.5.

A simple maneuver detection scheme for tracking The cost matrix R (i) associated with the
a maneuvering target. i.e. a scheme to detect the interceptor control was taken to be the same for all i
switching of models, is given by Bar-Shalom and
Birmiwal (1982,. It was observed there that suitable R(i) F 10.0 0 1
state models at all times will result in the best 0 0.0 (s2/m!2  Vi. (69)

r. • o
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The cot matrix Q associated with the relative 600

position of the terminal target decoy and inter-
ceptor state was taken to be

Q= 1.00 0 , 7 rack 2

70 0 1.00 ( -7-c

The interceptor control bound i"'(i) was taken 6o 4 . 6

to be 25m s2 forj = 1.2 and for all i. The discrete o,0 4 oo .0 16.00 20'0 240

controls u(k) were chosen over a grid of points posio te o )

(controls) 5m, s2 apart in both the directions and . 20m and trajectories 1.
whose effective direction of acceleration was within
90' of the direction of motion of the largetldecoy.
The speed limit of the interceptor. T m" was taken to BDO - +
be 250m s. The threshold n*. which is used to decide +

about the identities of the tracks. was taken to be .00- +
0.499. i.e.. the decision about the tracks was made +
when ir(k) was greater than 0.999 or smaller than .
0.001. After the decision about 'which track is from , 0 +
the target* is made. the bounded optimal control rck ra.k2
obtained from the solution of the LQG problem for -400 6

the estimated time-to-go was applied to the 00 ,0 Soo 120

interceptor until the determined target was " Posit.on ism)

intercepted. Fit. 4. Typical motions for the case of 0 = I, 40 = 22m.intercpted.= 20 m and trajectories 2.

Tracks of both vehicles were initialized using the

two-point differencing of the measurements me-
thod, as in Bar-Shalom and Birmiwal (1982). Initial
values of the interceptor slate components were
taken to be zero. +

The two sets of feature values considered were 4.00 I4.

01 = 22m. 02 = 20m and 1 = 28m, 02 = 20m.
+% Observe that the features of the first set differ 111

effectively by less than one standard deviation of the TracI Track 2

feature measurement noise.
For each of the four cases, a Monte Carlo -o. ...-_8.0 20.00 4.00 8.00 12.0

simulation of ten runs was performed. It was ,Positio (km,)

observed that the interceptor intercepted the true FiR;. 5. Typical motions for the case of 0I = = 01 28m,
target correctly in all the runs. Figure 2 shows the 0., = 20m and trajectories 2.

typical motions of the target. decoy and the
interceptor, starting at time zero until the inter-
ception took place. for the very close features set motions for the other three cases. For the same set of
and the trajectories one. Figures 3 5 show these random numbers and corresponding to each ofthe

above 40 runs, another set of runs was performed
'C sc with target and decoy tracks interchanged. Again,

the true target was identified correctly and
E ,intercepted in all these runs. Figures 6-9 are the

•. --..- plots corresponding to Figs 2-5 respectively with 0
Z T 2 --- - ,- changed (target and decoy switched).

From these figures, we observe that the
interceptor takes longer time in deciding about the

- _____tracks when the interceptor is on the endfire than on
6. 4 I )t P S .... the broadside. This is because the feature measure-

•~~ pOS+tor (kin,

SFI(,. 2. T)ptcal motions of the target. deco%, and the interceptor ment noise is more dominating in the former case.
- for the case of 0 mO, , 20m and traectories , When the target and decoy are more different, it
, Here. the distance benAen two consecutise similar symbols is takes less time to decide about the tracks, which is

,fise sampling intersals i15 seci and * represents the locations of intuitively obvious. When the target and decoy are
the two %ehwcles and the interceptor when the decision about the
tracks is made. Legend: - target: + + deco): nearly identicial, the interceptor does not follow

interceptor them directly. Instead, it takes a course so that at the

.5. ... , _.. . , " . . , . . , . , . , . , , ', x . - .- -. , " . - , -2 . - ,:V
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time of interception, the last nominal a posteriori The relative importance of the terminal state cost
probability fr(N - I ) is close to its extreme value over the interceptor control cost was seen by
(here we have the dual effect). To achieve this goal in changing all diagonal components of Q to 0.05 m- .
minimum time. the interceptor tries to be on the For this Q and the rest of the parameters unchanged,
broadside of the targetdecoy. In case the target and a MonteCarlooften runswasobtained foreachset of
decoy are easily discriminable, the interceptor the trajectories and features corresponding to Figs 2,
follows the vehicles directly because it anticipates 4, 6 and 8. It was observed that the true target was
that the future learning will guide it correctly to the intercepted correctly in all these runs. Figures 10-13
true target. are the respective plots giving the typical motion of

TrQoc 2 k k J lrack 2 J+ + + * 4I+-

0,. 
1 

--
',

- o ..X -0 . 6.. 20 J10 2400 :U . , aC. 0-:1 200 16.00 20 00 24i.X

s pOSAt.On (krri o postion kn)

F16. 6. Typical motions for the case of 0 = 2. 01 20r, Flu. 10. Typical motions for the case of 0 = , = 22m,
22m and trajectories I. i2 0m. trajectories I and reduced Q.

"" 'Track I Track 2

CI - 8. - 00

.: SIX 2 , OC 620 X6 2000O 24.00 0.00 4,00 80C 2".00
"p o$ t,ori (kin) x position {am)

Fi~i. 7. T)pical motion% for the case of 0 2. 01 20m. Fi(i. 11I. Typical motions for the case of 0 1 . 0, 22 M.
,=29m and trajetre .@ 20 m. trajectories 2 and reduced Q.
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tactical missiles. Nat. Aero. and Electr. Cont. p. 752.
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the situation where tile target is using a defensive for discrete-time systems with random parameters. IEEE
decoy in a stochastic environment. At each time Trani. Aiuto. Cont.. AC-18. 109.

contriol Ise. E. and Y. Bar-Shalom (19751. Adaptive dual control for
step. the interceptor chooses its bounded stochastic nonlinear systems with frec end-time. IEEE Trans.
and hence its trajectory such that it can differentiate uto. (ont.. AC-Z0. 670.
between the true target of interest and the decoy Wenk. C 3. and Y. Bar-Shalom 119801. A multiple model

adaptive dual control algorithm for stochastic systems withwith the aid ofthe expected future state observations unknown parameters. IEEE Trans. Auto. Cont.. AC-25. 703.
, and the feature measurements, approaching at the Wenk. C. J. (19811. Decision strategies with dual effect for

same time towards the target decoy. To reduce the inseparable stochastic control problems with continuous anddiscrete uncertainty. Ph.D. Thesis. University of Connecticut.
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stochastic dynamic programming equation is
obtained by performing the preposterior analysis. APPENDIX A: DERIVATION OF THE APPROXIMATE
The algorithm developed is especially useful if the PREPOSTERIOR DENSITY
cost associated with the terminal miss distance The locations nlik + II and R2(k + I) of the preposterior

is density (23) are obtained by matching the first two moments ofbetween the true target and the interceptor is (231 to the true preposterior moments of n(k + 1), ti:.

relatively high compared to the interceptor control Er(k + I)JZ.t. ,' ] and E[X2(k + I)IZ',/i, U']. From the
cost. The case of the target decoy changing their Fundamental Theorem on Expectation and (19) we have
state models is also considered. The simulation E[nlk + I)[Z•.4 ]= n(k). (A.1)
studies have shown the effectiveness of the scheme.

Using the total probability theorem, the true second moment
of nik - I t can be rewritten as

I REFFRLNCFS vtlk - I t"- Elir"(k + I )i1 /k1 . 0*] = r(k)

iBar-Shalomn. Y and K. Birnimal 119X21. Variable dimension E[n~ ,k + I 11 /I5
, 

i II - I] + [I -irk)]
filter Ii niancicring latig tracking. l.I:.E.E. Tra,P.. + I-2]. 0A.2)
h ,s n )>d -Liet Iro l( ' ,,. IS. h2 I.

ii,.-Shloim. it and F. '-c I 974. IDual eff'ct. certaint\ No%% consider E[n2-A + I lIZ1.1. 0(.0 =J]. In view of flt9.
cqi ,alemc, matd ,cparation m ,,tocha,,tic control. IJ.E.. and ignoring the \ariation of ttk( + I) with respect to Ylk + I).
Iran,. ht,, (,i. At-19. 494 then nik + It is an explicit function of llk + I t

Iar.Shtlon. Y. aitd E. (.sc I(19161. (orcepis and method% in
tochastic control. In C. T. Leondcs I Ed ). (, ,r,, aisl Di inu irik I I I = nl(k + 1)] 4 RIF]. (A.3)

Sw,tm'um .4dite in The,' r and Ippli'amtom. Vol. 12.
.Academic Press. New York. Expanding hi/, 1I to second order about

Bellman. R. 119611 .4daptur (,',rl Pr-,'te, .4 G,ultd Tr.
Princeton L'niversit. Press. Princeton. Ness Jerse\. A E l!/ + I)JZ'.13. 0,0 =J] IA.41

Br. Nson. A. F. and Y. C. Ho t 19691. .. pplphd Opt tmI ( ",,utr,I. Ch. 5.I .

* Ginn and Compan . W altham. M a ,,chu,cit,, gives

(',sler. Jr.. R. J. 11978). Dual control guidancc for homing
interccptors with angle-onl% mcasrement., I -I .11 - ,ulaume n(4t I I t f, + [VAJ IF - P,] + !i 1 - *] [V:f,] I - hoi
a ndl Control. I. 63. (A.S
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where i,. Vk,. VA, are the function. gradient and Hessian (f A..3 I ft - e) 7 0respectively. esaluated at 0,. Then. since 0 - , is approximatel. 2T, Bep - P2
Gaussian.'equation (A.5) gives AAP2 01 0

10.., - - 1,t 0, 1(, o Pi TF (B.5)

fiiS,(Vi, I tr: ((V*,tS,] j r i S j' (A.61 I
.t, =ir, o , -ft2) IB.61

where tr denotes the trace operator and S, ".k Ilk.) = is 0
* the residual coariance associated withfi, 2

StA + 1; k.t es= co% i, - 11Z'. f = ]. (A.7) ', - ['1 - 0i

This completes the computation of the second moment (A.2i. - 0 0] -  B.7l
Equating IA. I and IA.21 to the respectin e moments of(23i gises [ 0 . Bl

, T(ki = lrktir,(k 1 + Yl - l,)]n~ik f It (A.8I Step6
Compute the cost JIA) for the control utk I as follows:* tA! l I=t(A),Itk - It-. Fl - ikF: rlk Ii. IA.g

Ji/,I = uA RI/A)ulk + ErJ*(k + lIZ 5 .I. U'] (B.8)
Using 124). IA.8) and IA.gi yields the desired iwo-point
preposterior densit% locations where

r! II k - - A L , II -- 
2  (A 11l ,.'tJ *l - I)!Z '.l t .  t " z - ) rl) k -.- I)

t 11k - Ii- mki'rl - nk + lij,z(k + II
. [I -Yrlk|]'n(k + ltJ,tk + It

nI ) 'I - r.=lk - II. (A.I I - l - nlk)"-Al -nr.A - l))J/,lk + I). (B.9);'., I = I - 7r/. I'

No s e compute .J,,lA + I j for the sequence imj. m - .2;
t= 1.2.

i Estimate .Ik I. For the example considered

APPENDIX B: THE AL(UORITHM . (k) = min. .,kt.iNik)|

Step I where
Initialize n(Ot and %,(0. i,(0(01. %,(G 0 along with their

respectise covariances. Obtain the predicted states ,t1,0t. [rT]
S ,tl;0 Define k = 0. V,1k) = + + I I = 1.2 (B.10)

" Step 2 where [N ] is the greatest integer less than or equal to x. Tis the
Is it desired to obtain the optimal control for target sampling interval and i' is the positive root of the equation.

identification and interception itrue only when
inikt -0.51 < n*t? If yes. go to Step 3. otherwise terminate. [)r2i - t.,lkkt,, + t ,lkjkt(, .72

Se 3 - 2[(,(klk)t.V,klk) - X,1tk)kl + 3,klk).tdk)k(
Choose a feasible control utk . i.e. a control that satisfies the - l',(klkl]t - [(sdklk - isIkk))-

'-' constraints ii, < u,' l' ) and rik + I < ". Obtain t.ft-I/I - dklk)-2] = 0. (B.1 II
*dA + k).

• .' (it )Deline
S- Ik = ,4lkki - Bulk). tB. I(kt (B.12

Step 4 , I n=.r + I) (B.12)
Computeo, = E-.iA + I IZ1. 10. = and the associated Tk1 ,B

cosariance S,. For the example considered +,.Ik I i = A i,tktkl I = ! 2 (B.141

k:s+t I ;,t lktI-;t Ar, 1 I I = .4,A 14 + Bu(A. (8.151

I,/ ,isin :: Ik 1It - M A ' tB.2
The solution of the LQG problem for the example considered

where "A * I'k. v"(k [A t 1:I = 1.2 are gisen b the equations and for the nominal terminal time .N,#A + I) is
I 59 tand t0) respccti el% along with equations Ih, I and 0i2). The
expression for S, is gisen h% (63. ,,tik = - '[B'K.,,k + 2tB + Rik + I) ]
Step5 B'KIk + 2A,

. Step 5 + - Iij(4 + 01 1= 1.2 (B.16)
. Compute rk - Il and Yr.k - I1

1 1 2 where K,,(k + 21 is gicn by the backward equation (Ricatti

trM It- I! t i = nIlAl IA , I1 - rtlk),( B3t equationtI

K..,k s II .. ,Kk * 21- K, .,(k + 21B[B'K.,Ik + 21B

r,:lk - It = l - ilk III 111.4) - Rkt lt 'B'K.,Ik + 2):A tB.171
I - rIA)

wshere :lk - I I = E:''tk - I IZ1. I ] is gisen by equation
(A.21 which in turn is gien by equation IA.6t. This insolves it. and Q" is the 4 x 4 matrix whose elements are all zero except the
VR, and Vt, sshich. for the example considered. are given hb elements 1i. 1 l1. 3).13. 1 ) and 13.3) which are the elements (1. I k

%J/ ~ '~'~z**.*v.***:'; ~\ 9... .*.. .** * . % \.~
* V % V ~ ~ -C.-.,. *%
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(I. 2). (2. It and (2. 21 respecteis of the Q matrix. -or the where
general case. the optimal control 0,.,(k + I I is a function of A,. -I = 1. 2.41 and the different state components of the three state .,lit = tan " !B.261
iectors. The solution can be obtained for an specilic problem b) - -.i)
proper augmentation of the state vector and the transition
matrices. ,=7 tan ,

If the magnitude of the Pith component of this control exceed, = tan
the bound ui"'tk + I). then change thts component to
_uit '/ +It. i.e. sign tdirectton) unchanged. Obtain the DL!L and *,,iI is given by the equation (57).

control
is ,I ,/'.,(/,+ It -  : fl,,(s( R(.s .(s)

0'.,1k, + 1H. (8. 191 + ',, / g [i.j(1 + Ii. xn.,I+ I)]OgN .,y(i + I).

" i,.,t,.+ Ill, ' I - .,ti g'[ +., -. Ii.
1 runcaite this control to . ,I A I 1 I0 t - I I. it necessarN. .O !

that the noninial speed ofthe interceptor at uni A + 2 iequal to 4 ' I(jQ g2l( 1%, 41 . , + I . (H.2N

I-or the example considered.

uiiit For time i _ k- 2. define recursixelI
J'.,(k + l w .,~ slijs

I- Ii I 1.2 tB.20),

+ ii,,til" , + It- +.,(i + It: '

-. v 4ii 1...4 1 i. - I - BIOf,li - It 18l.21)

iI = 1.2 4B.22) + r[I ,1 ,, Il [,,.l + I I- ilmjj i I 1

,..itltitIl + I - i(i - II + :..,t' + - .-,,(i + l 2: (B.291
I + fmi- I I

.,, . , (B.23  S ep 7
P", " i.LtitZ,, ,'., t I Find the cost Jk I for different discrete controls and find the

Now, estimate S,01 as was done for time A. If!..,Wut + control u*tki that minimizes Jik). Apply uk) at time k.
then go to lit. Otherwise continue. Obtain the DUL control

B tit) = f*r_,,-it' .,[ + -I - n,,tit] " - ,,l tB.241 Step 8
Obtain the observations z1(k + I. f(4 + I. 1 = 1,2. and

ssherel,,,,(ilisobtainedLasfortinmcA + I andii,,0i)andf.,tIare zL(k + I. Update the estimates ii(k + Ilk + I, idk + Ilk + I.
adjusted.ifnecessar%.aswasdonefor timek 4 I.Goback tohimi). .,(k + 21A + 1) using Kalman filters. Update the posterior

For the example considered, probabilit rlk + I ) using equation (49) and for the example
considered. using equation 1501. Increment k by one and go to

fi ., ,l th sin [ I,,ii - i.., itIn lB.251 step 2.

J
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ABSTRACT based upon a first order Taylor series expansion of the
expected future coat and is called the first order dual

A new adaptive dual control solution is presented (POD). It offers some improvement over the non dual
for the control of a class of multi-variable input- cautious control based upon a one-step criterion. The

" output systems. Both rapidly varying random parameters results are based upon a simulation model with constant
and constant but unknown parameters are included. The but unknown parameters. Although the dual control of-
new controller modifies the cautious control design by fers some improvement over the cautious controller the
numerator and denominator correction terms. This con- improvement is not significant for most practical ap-
troller is shown to depend upon sensitivity functions plications where the system contains constant parameters
of the expected future cost. A scalar example is pre- and the objective is to control in steady state opera-

* -sented to provide insight into the properties of the tion. However, for random paramter variations, dual
new dual controller. Monte-Carlo simulations are per- control can sometimes offer significant improvement
formed which show improvement over the cautious con- over non-dual controllers [5,9]. The POD of [1,21 is
troller and the Linear Feedback Dual Controller of attractive due to its simplicity (it is comparable to
(1] and [2]. the cautious control design In algorithm complexity and

1. INTRODUCTION does not require numerical search). The objective of
the present study is to evaluate the cautious control-

Multi-variable systems which are characterized by ler and the POD for large random parameter variations
uncertain parameters with large random variations are a modeled as a random walk. Monte-Carlo simulations are
difficult challenge for most control design techniques. performed and conditions quantified under which the
The assumed randomness of the parameter variations dual controller offers significant improvement over a
often precludes the use of gain scheduling (non adept- non-dual cautious controller.
lve) control design. Stochastic adaptive control The FOD, although offering a reduction in the aver-
theory provides a principal design approach for systems age cost, is found to be unacceptable in many cases.
of this type. Exact solution of the stochastic prob- This is attributed to the sensitivity of the expected
lem with unknown parameters requires solution of the future cost whenever the system is characterized by
Stochastic Dynamic Programming equation and this is not limited controllability. A second order expansion of
feasible for practical implementation. The solution is the linearization procedure of [1,21 is presented to
known to have a dual effect [1,21 that can be used to account for this sensitivity. This new second order
enhance the real-time identification of system paramet- dual controller (SOD) inherently includes a robustness
ers as well as provide good control, property in that the controller accounts for sensiti-

Many suboptimal dual solutions have been suggested vity of the expected future cost due to parameter esti-
[1,2,5-11]. The various approaches which have incor- mates and their uncertainty. Simulations are presented
porated this dual property can be loosely divided into which show the improvement of the SOD over the cautious
two classes. In the first class [5-81, the optimal controller and the POD. This SOD uses a Newton type
control problem is reformulated to consist of a one- search procedure and is developed for multi-variable
step ahead criterion to be minimized, augmented by a systems. One of the main advantages of the SOD pre-
second term which penalizes the cost for poor identifi- sented herein is that it modifies the cautious control-
cation. This approach is attractive due to the analy- ler with a numerator "probing" term and a denominator
tical tractability of the solution; however, the solu- correction term. Although the SOD is still considered
tion is based on a one-step criterion and does not too complex for practical implementation, the structure

* fully exploit the dual property of a multi-step solu- of the control solution is in a form which permits
tion. Padilla and Cruz [14] give a dual control solu- practical design changes to the cautious controller to
tion for such a plant by minimizing the control object- include the dual properties.

- ive function subject to an upper bound in the total Section 2 gives the problem formulation. The ap-
estimation cost. Their objective function includes a proximate dual controller for the multi-variable input-
standard control objective function and also a second output system is developed in Section 3. Section 4
constraint term which reflects the sensitivity of the analyzes this dual controller for a scalar example with

4,, parameters to the state of the system. Thus the solu- one unknown parameter. Section 5 concludes the paper.
tion adjusts itself to exercise better estimation for
such sensitive parameters within the upper bound. The 2. PKL1M FOUNUI.ATION
second class [9-11] utilizes the stochastic dynamic The multivariable system under investigation is

. programing equation directly and performs lineariza- x(k+l) - €(k) + 8) u(k) (2.1)
tion of the future cost in order to obtain a solution.
Previous control solutions among this second class re- where c(k) is an unknown vector and B(k) is a matrix of
quire a numerical search procedure which poses diffi- unknown parameters. The unknown elements of cCk) and
culties for a practical solution for on-line control B(k) are denoted as 0(k) with covariance matrix P(k).
for multivariable systems. These are represented by a discrete random model

The linear feedback dual controller of [1,2] is 0(k+l) - AO) + v(k) (2.2)
,' *Supported by NASA Ames Research Center Grant NAG 2-

213; Y. Bar-Shalom was also supported from Air Force E(v(k))'O and E(v(k)v'(J)) - V (2.3)
Office of Scientific Research Grant AFOSR 80-0098.
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The measurement equation is As discussed in [1] and [2) J (4)'is a nonlinear
y(k) - x(k) + w(k) (2.4) function of the parameter estimates 6(l). and covariances

P(l) and thus a linearization was performed. In [1] a
where scalar formulation was presented and a first order lin-

earization was pertormed about the nominal parameterE(w(k)) - 0 and E(w(k)w'(j)) = W kJ (2.5) estimate squared (8(0))2 and nominal covariance P(l).

E(w(,k)v'(J)) - 0 Also in [1,21 the vector case was presented and linear-
ization to first order performed. To more accurately

and x(k), y(k) being n dimensional vectors. The control account for the dual effect a~second order Taylor Series
criterion to be minimized is the expected value of the expansion is presented about 0(0) and a first order ex-
cost from step 0 to N pansion about the nominal covariance P(l). In addition

N (as will be presented subsequently) the covariance P(1)
J(O) - E{C(O)} - E { Z x'(k)Qx(k)+ u'(k-l)Ru(k-1)) will include a linearization to second order in u(O).

k-l (2.6) In [1,21, P(l) was linearized to first order. It is

- where N - 2 for the two step ahead criterion. believed that linearizations to second order are neces-
,ary to better account for the nonlinearity in P(l) and3. APPROXIMATE DUAL CONTROLLER FOR TWO STEP CRITERION 8(1) of (3.3) and in u(O) of (3.7) and (3.8). In addi-

The minimization of (2.6) with respect to u(O) and tion a nonlinear Newton algorithm is used in the second
u(1) subject to (2.1) - (2.5) is obtained from the order approximation.

Stochastic Dynamic Programming equation [12,131 Linearization of (3.3) about the nominal D(l)
- A8(O) and P(l) using the nominal u(O) results inJ*(k) - min EkC(k)+J*}k+l)l y k ) k-N-l,... 1,0 (3.1) 3 * (1)

u(k) A() A[l, (0), F1) I + ( [i) -A;(O)]I
where J*(k) is the "cost-to-go" from k to N and Yk is aim
the cumulated information at time k when the control 1 aj*(l(

y[0((1) - AB(O)1' [OW) Aemu(k) is to be determined. For N - 1, (3.1) is + a 2
(1)

J*(O) - min E{x'(l)Qx(l)+u'(O)Ru(O)+J*(l)IYO) (3.2) n a am *(1) t _t
u(O) + E Z Z£p 1 - P W(l (3.13)- where 3* (1) is the optimal cost at the last step and is I i- j I ,(l)

obtained by minimization of J(N-l) for N - 2. Assuming"'"diagonal Q - diag(qt) this results in [1,2] where the superscript t represents the covariance matrix
"- d l iassociated with the tth row of parameters and Pi,j(l)

"* ^ n P is the i-J th element of the covariance matrix
=*(1) c'()Qc() + (1 )  (3.3) P(M), m being the number of unknown parameters.

1= _ Using (3.6) the expected value of (3.13) is
- [c'(1)QB(l) + qP l)] [;'(1)Q;(l) +=i E[J*(l) IY ° ]

-a[,I() ()

n n a
2
j*(l)

t.+ (l) RI' n + tr[ K(l) E(v(l)v'(l) IYO)K'(1)l+ tB + [I B'(l)Qc(l)+ E qeB. (l)J ae(2
t-11

and + m E , (1) - P (1) (

*u 1)- -B'(l)QB(l) + E q1P(l) + R] [B (l)Qc(l) 2 Pil -(.4

.(n Using (3.7), (3.8) and the innovation covariance
( (3.4) E{vt(l) vi(l) IYo } 

- H(1)P "() H'(J) + W (3.15)

where (3.14) can be written as

p1(l) = c)(35 E[J*(l) jYOj - J*(l, ;(0), F(l)l
pL( (1 (i 3.5) Ea4, '"I +  +1
P t (I nt ( 1)3L .- (1 j+------ Ft----i )-APij(0)A'

P(1) is the expected value of (e(1)) 2 for time 1-1 i-l J-1 ae(1) ,J 1()
* -., step 2 given measurement y(l) at time step 1. The in- V + J*i)" - ]

dx t is used to represent the row number in (2.1) and "Vi l 1)-P (1) (3.16)
P-(1) is the associated parameter covariance. ()

The parameter estimates 8(1) and covariances P(I) isJ
"- are obtained from the Kalman filter. Since W is diag- The expected future cost (3.16) 1 shown to be a

onal one can decouple the estimation. Then function of the predicted covariance Pi j(1) with a

81(1) -A6(O)+AK (1) V 1 ) (3.6) multiplier given by the sensitivity '~

1J-(1) and )Sinca the covariance
K Z((1) - P (O)H'(l)[H(1)Pt(O)H'(1)+W1 ] (3.7) ap (1) ae ()ae(1)

t t iJ i j
P (1) - P (0) - K (L)H(1)P (0) (3.8) Pt (1) depends on the control u(O) the control has the

t - j

P t (1) = AP (1)A' + V (3.9) dual effect. It should be noted that the importance of
the dual effect depends upon the sensitivity of the ex-where pected future cost with respect to both the covariance

V (1) - yt(1) - H(l) i(0) (3.10) and parameter estimate.
The optimal control u(O) can be comuted by mini-

H(1) -:T Sin e d by is i
H(l) l[ uT (0) (3.11) mization of (3.2) using (3.16). Sin P ij(1) is non-

B T linear in u(O) a numerical search procedure is required.
" (1) =ct(l) BIM I ,2...n row of B (3.12) This is accomplished using a second order linearization

2
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in u(O). the more important wiU be the dual effect.
Thus (3.8) is linearized to second order about the The resulting dual controller (3.19) exhibits a

control ul(O), which is in the vicinity of the optimal robustness property with respect to parameter variations

control. and uncertainty of the future cost by including a term
which appears in the denominator of the dual controller.

Pi (1) p,(1) + [u(O)-u (0)] In addition, a probing term appears in the numerator.

i) i- P u(0) u (0) 4. SCALAR EXAMPLE WITH ONE UNKNOWN PARAMETER

2 P 1  () [ To further understand the dual control solution a
+ IU(0)-u ()]' ij (u()-u (0)] (3.17) scalar example with one unknown parameter b is presented.

(3 u 2 (0) 1 The approximate dual control solution for this scalar
u (0) case using Q - 1,^R - 0, is given by (3.19) - (3.21)

The expected future cost as given by (3.16) and with P (1) and (0) being replaced by Pb(1) and b(0)
(3.17) is uadratic in u(O) and thus a closed form respecti

4
ely.

solution u (0) is obtained by minimization of (3.2). The partials required in the control law are
The optimal dual control u*(O) can now be computed 2b2

from (3.2) using (3.16) and (3.17). It is obtained by a i (1) c b(0(4.1)
solving (3.18) aPb(l) 2. 2

E{x'(l)Q x(l) + u'(O)Ru(O) + J*(l)lYo }  
0

aaJ*(l2 2- f Pb(l)-3 b 2(0) (4.2)
The optimal u*(O) is thus a- -2c2b() -2 - 3

^ ^ n I R -(l) abl I()F) (b (O)+Pb(l)) bM
u*(O) - -[B'(O)QB(O) + E (qtPB(O) + Ft) + R]

-I

t-1 2 1 2
n -Ibf

1
) 

2
Pb(O)W u (0)a

; [B'(0)Qc(O) + E (q 1 P3 (0) + (3.19) b 2 (4.3)
t1.+f) au(O) u1(0) (Pb(Ou (0)+W)2

where the matrix Ft and the vector ff are

1m I a*(1) I a aJ*(l)1 3P b(1) _2 W- 3
Pb(O)u (0)

F1  iE j- 2 a u(0) u(0) (0 _2 (OW2 3 44
1 1) a/ (0) b(O))

" 1 (1 where the nominal u(0) and (1) are

au(O) u(O) uO )(3.20) b(0) c
(0);(O),f(l) J(O) - 2 b(0)  (4.5)

f E 1 ((J1*)(l) Iapb *()"': . - u(O) -. ,(~i- 1 ( 1 (1) b(1) 2 v

ij i j (l) - -a2(0+ +V (4.6)
1-"b (O)2 (0)+4.1

a u I (3.21) The parameter estimate b(b) and Pb(0) are computed
uu(0) (u uI(0),8(O),F(l) using data up to k - 0 (i.e. y(O)).

The expected future cost based upon the lineari-
Initially the nominal value of u(O) is computed zation of (3.16) is

from (3.19) with Fo and f equal to zero. Then o rfd- 
ient search is performed until in the vicinity of the EJ(l) I) 1 - c -

2 b(0) i (1 )
optimal u*(0). Then (3.19) - (3.21) are used until (0)4 ab
convergence is achieved. This iteration procedure is
essentially Newton's method for minimization of a non- - a2 P(0)-v) + (P (1) ) (4.7)
linear function. The gradient search is used because b() b b
the stochastic cost in (3.2) being minimized is a high

order nonlinear equation and the gradient procedure is 4.1 Evaluation of the Cautious Controller
used until uI(O) is in the vicinity of the minimum The performance of the cautious controller can be
before switching to the Newton method. The nominal evaluated using (3.2) with u(0) evaluated at the
covariance FL(I) is computed from((3.7) - (3.11)) with nominal
u(O) - u(0). The sensitivity (partials) in (3.20) and 2
(3.21) of the cost J*(1) are computed from partial J(0) - [E{x2(1)iy ° } + E{J*(l)ITo)] -. ( 4.8)
derivatives of J*(l) (3.3) and Pt(l) (3.7) - (3.9) uca) u(4)

evaluated at the nominal. The partials of the covari- The first term in (4.8) represents the expected cost at
ance are evaluated at uI(0) which is evaluated at the k - 1 and the second term in (4.8) represents the ex-

* previous iteration I. pected future cost at k - 2 using the cautious control
The approximate two-step ahead dual control of at k - 2 (i.e. u(O)) and using the cautious control at

(3.19) - (3.21) can be interpreted as a modification to k - 1 (i.e. u(O)-.(O)). (4.8) is evaluated using
the cautious controller by the terms Ft and ft. These data YO.
terms depend upon the sensitivity of the future nominal Using (4.1) - (4.7), (4.8) becomes,

cost J*(1) with respect to the parreters &(1) l ) 2 b 2  2 2()
for all ij and their covariance P- (1) for eacA row J(0) - 2 b

t of parameters. Whenever these sediLtivities are b (0)-b (O)+Pb(1)
large the terms F1 and ft will be significant (that is
the dual effect will be important). Thus the sensiti- 2 * a

2
P
2
()G

2 
(0)

vities take into account in the control solution the + b (4.2)
sensitivity of the nominal future cost due to parameter2 b'(1) Pb(0)2(0)4 .)
variation and uncertainty. The larger this sensitivity

3
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The last term in (4.7) is zero'since b(1) evalu- i -2
ated at the nominal control (i.e. cautious control) (0075 -, i 1)
equals Fb (). The first two terms in (4.9) represent b i(O)--.l ab (1) Iu(O)--.l1the average cost at step k - 1 and the last three terms

! represent the expected future cost at k - 2 using the aPb(1) ] 12P(1) -+.cautious control. ( 1

A simple example can be used with (4.9) to demon- u o) .38 2(0) u1(O) .6

strate when the cautious control is expected to behave

* poorly. Ft = .87 . ft - .85 (4.17)

meter a scalar example with one unknown b pars- The above sensitivities (4.17) were evaluated inand let the vicinity of th% optimal uI'O) - -.6 and P (1)-.278.
b(O) = .05 , P(O) = .5 , a - 1.0 (4.10) The dual control u (0) using u (0)- -.6, c-is

V - .1 W - . ,c- l * b(0)c+ .85
The expected cost at k - 1 and k - 2 is computed bu2(0)-+ Pb(O) . 24

from the nominal, u(O), b(1) and 
2  

) which yields
bb (1) The corresponding future expected cost using (4.14)

2 * ) and (4.17) is
(O) = -.1 , (1) = .575 , 2 -2 -3.47 (4.11) 2 2 *2

(1)(E{J)(1) Y°J C
2  &1 2 PbCO)u 2 +0)and 2= *2

J(0) = c
2 
+ C2 , c - 1 (4.12) uC) Pb(0)u (0)+W

Thus the cautious control applied at k - 0 results .442 c
2  

, c = 1 (4.19)
in no reduction in the cost at k - 1 due to large un-
certainty P(l) and also no reduction in the future ex- The result of this example shows that the dual
pected cost since u(0) is small and no improvement in control of (4.18) reduces the-expected future cost to% parameter accuracy occurs at step k 1i. 44% of the original c

2 
with no control. The cautious

control resulted in no reduction of the future cost.
4.2 Evaluation of the Dual Controller The terms responsible for the improvement with dual con-

The dual controller of (3.19) (3.21), (4.1) trol are the second order sensitivities a2P(l) and
(4.6) can be evaluated by computing the average cost of a j 1a 2 (0)
(4.8) using the covariance ab (1)

a
2
Pb(0)W The dual control of (4.18) differs from the cau-

S b bMu2 +V (4.13) tious control (4.11) by the terms Ft - .87 in the denom-b inator and ft - .85 in the numerator. The denominator

term in effect provides more "caution" whereas theThe expected future cost (4.?) reduces to numerator term is an additive probing effect. The term

2 F, provides a "robustness" property in that the sensi-
J1 • c tivity of the future cost to paramete4 uncertainties as

'- (o)+F1 they appear in the controller (i.e. b2(0)) are minimized.
u (0) Thus a new interpretation of the dual control is that it

b2 contains robustness and learning (via probing'. These
+ 1 2j*(1) a b()u*(0) concepts are applicable to the multivariable dual con-2 -2(1) *2 troller in (3.19) - (3.21).

3b(O)u (0)+W
b 5. SIMULATION RESULTS

j*(1) 
2  ( 0)*2 () a

2
p (0) 2 

(0) Performance was evaluated from 100 Mqnte Carlo

) 2. (4.14) runs for the following controllers where b(O) was set
9b(I Pb(O)u* (0)+W P (0)u (0)+W to b(0) with covariance PbO: 1 Cautious Controllerb b 2) FOD 3) SOD

and the total expected cost at k - 1 and k = 2 using The above algorithms were tested for two cases:
(4.8) is a) Time varying case, b(O) - .05, Pb(0) - 1.0 ,

* * (0) I E "x2) ) u* + E{J*(l) IY° (4,15) V- .l, c - 1.0, W - .01 and W - .1, a - 0.9
b) Constant case, with b(O) - .05, PbCO) - 1.0,

u (0) u(0) v - 0, c - 1.0, U = .01 and U - .1, a = 1.0u (0) u*(0
where Example Va 0,c-10W-.0anW-.,a-1Q

E(x 2(1) ly )  
= c2 + 2b(0)u (0)c + Table 1 summarizes the results of the simulation

runs. All three algorithms were tested on this example

u (0) for two different levels of measurement noise covariance,
(b2  

+ *2 W = .01 and W - .1. 100 Monte Carlo runs were performed(0) +P(0))u (0) (4.16) each of 40 time steps. For each run, an average cost

was computed over 40 time steps and then the averages
Examination of (4.14) shows that the dual control over 100 runs are tabulated in Table 1 and Table 2.

can reduce the expected future cost over the cautious The tables clearly indicate that the SOD yields the
control since the last two expressions in (4.14) can be least cost. The dual effect shows a larger improvement
negative if u >() u (0). Thus the dual property for larger measurement noise (i.e. W - .1). Run numbers
can have a desirable effect on the future cost. 7 and 14 of the 100 Monte Carlo runs were selected for

The cost J (0) is computed using the scalar exam- plotting. The cost and parameter value are plotted in
ple previously discussed for the cautious controller. Figures 1 through 4. It is evident that the second
A search procedure is used on (4.15) using (4.14) and order dual improves upon the other two on the average.
(4.16) with the parameter values from (4.10), and u*(O) Example b
is iterated until in the vicinity of the minimum In this case the true parameter was close to zero
yielding (i.e., b(O) - .05) but constant. Table 2 summarizes

the result. The average cost obtained Ly the SOD is

4
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much lower than the other two. The SOD always exhibited 13. Bertsekas, D. P.. Dyamic'Prozramin& and Stochas-
excellent convergence whereas the other controllers per- tic Control, Academic Press, NY, 1976.
formed poorly. In addition the new controller consist- 14. Padilla, C. S. and Cruz, J. B., "Sensitivity Adap-
ently avoided turn off and burst [5). This was an im- tive Feedback with Estimation Redistribution",
portant common feature in all the Monte Carlo runs. IEEE Trans. Automatic Control, Vol. AC-23, No. 3.
Runs 26 and 80 are plotted in Figures 5 and 6 respect- June 1978.
ively, as typical examples.

The simulation study has shown that the new dual
controller improves upon the cost on the average. The
magnitude of the improvement on the average appears to W-.1, V-.1, B-.05, P-1.0
be relatively small for the noise levels used. However, Run Number 7
the real advantage of the new dual controller is the 1.5 CAUTIOUS
improvement in those instances where the cautious con- C
troller and the FOD (1,21 yields unacceptable results. --- FOD

Although the FOD [1,21 shows improvement over the caut-i SOD

ious controller, it has been found to be unacceptable i
at many time points.

6. CONCLUSION 1.0

A new adaptive dual control solution based upon the
sensitivity functions of the expected future cost has ~

* been presented. This controller (SOD) takes into ac- 8
count the dual effect better by performing the second I
order Taylor series expansion of the expected future I
cost. The form of this controller is a modification of iJ i ,
the one step cautious controller. The POD of [1,21 did
not have the denominator correction ter like the pe-
sent one. This adds stability to the new control de- A'!
sign. Simulation results of a scalar model have shown 0.
the improvement obtained using the new dual algorithm. 0. 8. 16. 24. 32. 40.
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-.,V-.1, B-.05, P-1.0 W-.I, V-O. B=.05, P-1.O

Run Number 14 Run Number 26
CAUTIOUS - CAUTIOUS

SPOD FOD

SOD

A A - - -SO
1.0 1.0 .SO

i '

.5 5

0 .
0. 8. 16. 24. 32. 40. 0. 8. 16. 24. 32. 40.

TIME STEP TIME STEP

Fig. 3. Time history of cost comparing Fig. 5. Time history of cost comparing
the SOD, FOD, and the cautious the SOD, FOD, and the cautious
controller (Time varying parameter controller (Constant parameter

case: Run No. 14 from 100 case: Run No. 26 from 100
Monte Carlo Runs) Monte Carlo Runs).

W-.W1, V-.l, B-.05, P-1.O W-.1, V-.0, B-.05, P-l.O

1.2. Run Number 14 Run Number 80

1.5 CAUTIOUS

0.7 SOD
-SOD

0.2 1.0

. <
" -0.3

-0.8

-1.3 "
0. 8. 16. 24. 32.

TI E STEP 0. "0. 8. 16. 24. 32. 40.
Fig. 4. Time history of parameter TIE STEP

for Run No. 14 from 100

Monte Carlo Runs Fig. 6. Time history of cost comparing
(Time Varying Case). the SOD, FOD, and the cautious

controller (Constant parameter
case: Run No. 80 from 100
Monte Carlo luns).

NoMeasurement Average Cost Measurement erage Cost

•_ __Noise Covariance Noise Covariance
w Cautious First Order Second Order w tious First Order Second Order

" Dal ualDual Dual

.01 .475 .469 .458 .01 .109 .087 .069

.1 .623 .608 .514 .1 .359 .250 .142

Table 1. Average Cost for the three controllers on the Table 2. Average Cost for three controllers on the
time varying parameter model (b(O)-.05, Constant Parameter Model (b(O)-.05, Pb(

0
)*l

.b(0)- V.l, c- ) V-0, c-l)5:,
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